透過您的圖書館登入
IP:3.138.101.95
  • 學位論文

光壓電材料在無閥門式微幫浦之應用

Application of opto-piezoelectric material in valveless micropump

指導教授 : 李世光

摘要


本論文嘗試以光學場調制力學場能力的複合材料作為致動器,應用在壓電式無閥門微幫浦(Valveless micropump)上,目的為以使用光學場調控力學場的方式,達到改變空間中的動態流率(Dynamic flow rate)。該複合材料是透過感光導電材料TiOPc (Titanyl Phthalocyanine)/copolymer薄膜以及蜂鳴片壓電材料PZT (Lead Zirconate Titanate)來製作。本文針對感光導電材料TiOPc薄膜做了詳細的電學阻抗分析實驗,以精密阻抗分析儀(Agilent 4294A)進行量測探討其照光前後阻抗之變化及電學特性。文中探討改變操作電壓、頻率及擴散器開口角度(2θ)的參數,比較光調控無閥式微幫浦照光前後之淨流量差異。 我們所製作出的無閥式微幫浦在驅動電壓為100V、頻率為600Hz,開口角度θ為10°時能產生的最大體積流率為95.33μL/min,在此條件下進行光調控無閥式微幫浦空間中動態流率及淨流量的探討。而光調控無閥式微幫浦在驅動電壓為100V、頻率為600Hz,開口角度θ為10°時照光前後產生的最大體積流率從6.09μL/min增加到19.62μL/min。在本研究中,我們發現可以透過不同照光區域,改變光調控無閥式微幫浦在空間中的動態流率,輔以其他規劃中的研究,或可運用前述光壓電材料的特性與其在類同於無閥門微幫浦的初步應用架構來抑制微幫浦的回流。

並列摘要


In this work, we intended to change the dynamic flow rate of valveless micropump by developing a new smart composite material which is able to construct an actuator that can spatially modulated by optical means. The smart opto-piezo composite material is composed of photoconductive material TiOPc and piezoelectric material PZT. Spatial optical modulation in an opto-piezo composite mentioned above means modulating a force field of the actuator by changing the light field instead of changing the spatial distribution of the electrical field. To enhance the effect of modulating a force field by using the light field, the electrical impedance of TiOPc/copolymer thin film was measured by Agilent 4294A Precision Impedance Analyzer to investigate the impedance and electrical characteristics change before and after the external light illumination. We analyzed the relationship between the parameters of driving bias, frequency and diffuser angle so as to compare the flow rate difference of valveless micropump after illumination. According to the experimental results of flow rate of valveless micropump, the maximum flow rate was 95.33μL/min under the condition of driving bias 100V, frequency 600Hz and diffuser angle 10°. Furthermore, the maximum flow rate of optical-modulated valveless micropump increased from 6.09μL/min to 19.62μL/min, and the ability of spatial dynamic flow rate modulation was confirmed by illuminated different area of valveless micropump. Coupling these preliminary results with some future works, return flow typically associated with the valveless micropump can potentially be further reduced in the future.

參考文獻


[28] L. Ling, "The Applications of Electric Charge Generating Material (TiOPc) and Electric Charge Transporting Material (TPD) on Organic Photo Conductor Drum," Chemistry, vol. 21, pp. 575-584, 2003.
[1] J. Jang and S. S. Lee, "Theoretical and experimental study of MHD (magnetohydrodynamic) micropump," Sensors and Actuators A: Physical, vol. 80, pp. 84-89, 2000.
[3] W. L. Benard, H. Kahn, A. H. Heuer, and M. A. Huff, "Thin-film shape-memory alloy actuated micropumps," Microelectromechanical Systems, Journal of, vol. 7, pp. 245-251, 1998.
[5] T. S. Lammerink, M. Elwenspoek, and J. H. Fluitman, "Integrated micro-liquid dosing system," in Micro Electro Mechanical Systems, 1993, MEMS'93, Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE., 1993, pp. 254-259.
[8] E. Stemme and G. Stemme, "A valveless diffuser/nozzle-based fluid pump," Sensors and Actuators A: physical, vol. 39, pp. 159-167, 1993.

延伸閱讀