透過您的圖書館登入
IP:3.139.81.58
  • 學位論文

還原型石墨烯與氧化鋅混合材料作為電子傳遞層對鈣鈦礦太陽能電池之效率提升

Efficiency Enhancement via One-pot Reduced Graphene-Zinc Oxide Hybrid Material of Electron Transporting Layer in Perovskite Solar Cell

指導教授 : 謝國煌

摘要


鈣鈦礦太陽能電池(Perovskite solar cell)近年來被學者大量地研究,其低汙染、溶液製程且低成本的特性使得研究前仆後繼。另一方面,石墨烯(Graphene)作為一新穎且有著諸多特性的材料也被科學家所重視。 氧化鋅與二氧化鈦常見於鈣鈦礦太陽能電池中電子傳遞層的材料,本研究在探討添加石墨烯與氧化鋅作結合對於鈣鈦礦太陽能電池效率的影響。利用掃描式電子顯微鏡(Scanning electron microscope)、穿透式電子顯微鏡(Transmission electron microscope)、紫外線分光光譜儀(UV spectroscopy)、光電流轉換效率測量儀(Incident photon conversion efficiency)與X-光繞射儀(X-Ray diffraction)測量元件性質並探討效率提升之原因。 使用還原型石墨烯與氧化鋅混合取代傳統電子傳遞層的材料將效率提高到15.02 %。開路電壓(Open-circuit photovoltage)與短路電流密度(Short circuit current density)皆大幅的提升。推測氧化鋅在主動層與石墨烯中藉由靜電作用力(p–π stacking/electrostatic interaction)扮演重要角色使得電子能順暢傳遞進而提升能量轉移效率(Power conversion efficiency)。

並列摘要


Perovskite solar cell is highly studied by scholars in recent years. With the advantage of low pollution, solution process and low cost, perovskite solar cell’s research does not stop. On the other hand, graphene being a novel material with many properties also attracts the attention of scientists. Zinc oxide (ZnO) and titanium dioxide (TiO2) are commonly used as the materials of electron transporting layer in perovskite solar cell. In this study, we investigate the influence toward efficiency by adding graphene to combine with zinc oxide. Simultaneously, we use scanning electron microscope, transmission electron microscope, UV spectroscopy, incident photon conversion efficiency and X-Ray diffraction to measure physical properties to explore the reason of efficiency improvement. With the replacement of traditional materials in electron transporting layer by reduced graphene oxide with a zinc oxide nanoparticle (r-GO-ZnO), power conversion efficiency reaches 15.02 %. Open-circuit photovoltage and short circuit current density also increase massively. We speculate zinc oxide playing a crucial role connecting graphene and active layer via p–π stacking/electrostatic interaction and therefore electrons can transport smoothly with the consequence of enhancement of power conversion efficiency.

參考文獻


2. I. E. Agency, World Energy Outlook 2012.
3. REN21, Renewables Global Status Report 2012.
4. German advisory council on global change 2003.
13. J. Sun, L. Xiao, D. Meng, J. Geng and Y. Huang, Chemical Communications 2013, 49(49), 5538-5540.
14. S. Sternstein and A.-J. Zhu, Macromolecules 2002, 35(19), 7262-7273.

延伸閱讀