透過您的圖書館登入
IP:3.133.159.224
  • 學位論文

以壓電肌肉感應貼布監測肌肉疲勞行為之分析方法開發與驗證

Development and verification of a monitoring method for muscle fatigue using a piezoelectric muscle-patch-sensor

指導教授 : 李世光
共同指導教授 : 許聿翔(Yu-Hsiang Hsu)
本文將於2024/08/09開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本論文旨在研發壓電肌肉感測貼布(Muscle-patch-sensor, MPS)之分析方式開發與驗證,以應用於人體肌肉做動時的體表形變量測。為製作高靈敏度且具可撓性感測器,選用聚(偏氯乙烯-三氯乙烯)(Poly(vinylidene fluoride-co-trifluoroethylene),P(VDF-TrFE))作為感測器之感測材料,此高分子壓電聚合物材料具有良好的力電耦合性質以及壓電效應,為能有效提升其拉伸應變範圍,本研究利用靜電紡絲製程,紡製出P(VDF-TrFE)的壓電纖維束,並使用拉伸系統對絲線做纖維重複拉伸製程,比較抗拉性質與纖維排列性,做出具可量測40%應變範圍之感測器。將絲線加上RTV矽橡膠作為基板,以銀紗線當作電極,可製做出長為10mm、寬為3mm、厚度為1mm的壓電肌肉感測貼片。再經過比較不同纖維線性化之絲線製程的壓電肌肉感測貼片,比較抗拉性質、耐久度測試,經實驗驗證最佳化的壓電感應貼布為絲線經過兩個小時40%應變之纖維線性化,在做成感測器後,需再經過三小時的40%應變拉伸才能使輸出訊號更穩定且線性。本研究並以所開發之壓電肌肉感測貼布對前臂肌肉進行肌肉疲勞實驗的測試,同時以市售的EMG(Electromyography)肌電圖量測做為對照組,將兩種的時域與頻域訊號進行分析比較,研究以壓電肌肉感測貼作為肌肉感測器的訊號分析方法,以量測肌肉實際形變所產生的訊號,並利用這些分析方式可得知肌肉疲勞的趨勢。當肌肉施力過久時,會產生肌肉疲勞,但在疲勞後因肌肉交換收縮與代償使得肌肉恢復肌力,而整體疲勞的趨勢為EMG-MF(Medium Frequency)下降、EMG-RMS(Root Mean Square)上升、IEMG(Integral electromyography)上升、MPS-MF下降、MPS-dRMS(Difference of Root Mean Square)下降、dIMPS(Difference of Integral Muscle-Patch-Sensor)下降,且MPS-dRMS與dIMPS有互相補償現象,此現象發生於低度疲勞,若兩者皆為負值時,則是高度疲勞,並發現縮短休息時間會使肌肉疲勞趨勢提前,另外男性受試者與女性受試者的差異為女性受試者會較早有高度疲勞且有較多疲勞週期,而影響肌肉表現的原因為個體化的差異、大腦的控制、肌纖維的傳遞速率、肌肉代償、肌肉疲勞等,此感測器證明高分子壓電微奈米絲線可以應用於肌肉形變量測,也具有潛力應用於虛擬實境、健康醫療及健身運動等相關領域。

並列摘要


The purpose of this paper is to develop a piezoelectric muscle patch sensor (MPS) which can be applied to the measurement of human muscle deformation. In order to make a highly sensitive and flexible sensor, poly(vinylidene fluoride-co-trifluoroethylene), P(VDF-TrFE)) is selected as the sensing material of the sensor, This piezoelectric polymer material has good electrical coupling property and piezoelectric effect. The P (VDF-TrFE) yarn is spun out according to a specific ratio by the electrospinning process, and the alignmnet system is used to make the same strain and different hours on the yarn. Then, compare the tensile properties and fiber alignment. Using soft silicone SilSkin as the substrate and silver yarn as the electrode, a MPS can be manufactured. The snesor is 10mm in length, 3mm in width, and 1mm in thickness. The MPS with the different hours aligned yarn compares the tensile properties and durability test. The final optimization of the MPS process requires the yarn to be aligned with 40% strain for two hours. After the sensor is made, it needs to be stretched for three hours with 40% strain before the output signal can be stable and linear. In addition, the forearm muscles are tested for fatigue experiments. At the same time, a commercially available EMG is used as a control group, and two different signals are analyzed in the time domain and frequency domain. This sensor can measure the actual deformation of muscles. Using different analysis can get the trend of muscle fatigue. When the muscle is exerted for long time, muscle fatigue occurs, but the muscles recover will occur due to muscle exchange contraction and compensation after fatigue. The overall fatigue trend is EMG-RMS increase, IEMG increase, EMG-MF decrease, MPS-dRMS decrease, dIMPS decrease, and MPS-MF decrease. Shortening the rest time will make the trend of muscle fatigue earlier and more obvious, and the muscles have a mechanism of muscle compensation when exerting force. The conditions that affect muscle performance are individualized difference, brain control, muscle fiber transmission rate, muscle compensation, muscle fatigue, etc. This sensor proves that the P(VDF-TrFE) fibers can be used to measure muscle deformation, and it also has the potential to be used in related fields such as virtual reality, health care, and fitness.

參考文獻


周立德. "物聯網與大數據." http://www.myhome.net.tw/2017_04/p03.htm (accessed.
IDC, "Consumer Enthusiasm for Wearable Devices Drives the Market to 28.4% Growth in 2020, According to IDC," 2021. [Online]. Available: https://www.idc.com/getdoc.jsp?containerId=prUS47534521.
J. J. Rodrigues et al., "Enabling technologies for the internet of health things," Ieee Access, vol. 6, pp. 13129-13141, 2018.
M. Cheng et al., "An review of flexible force sensors for human health monitoring," Journal of Advanced Research, 2020.
F. Xu et al., "Recent developments for flexible pressure sensors: a review," Micromachines, vol. 9, no. 11, p. 580, 2018.

延伸閱讀