本論文的研究主要在於探討如何能夠提升氧化鋅薄膜的導電能力。在論文之中,我們首先介紹了如何以溶膠-凝膠方法製備氧化鋅薄膜以及以水熱法製備氧化鋅奈米線。接著我們探討了退火、摻雜、電漿等等製程對於氧化鋅薄膜特性的影響,並在最後討論了將氧化鋅奈米線轉換為高導電氧化鋅薄膜的方法。 我們以掃描式電子顯微鏡分析氧化鋅表面的型態對於退火製程所產生的變化,並且以四點探針來量測樣品的電阻率,以外光╱可見光光譜儀分析氧化鋅薄膜在退火前後的光學性質。氧化鋅薄膜在以600˚C左右的溫度退火時能得到較佳的導電品質。若是將氧化鋅薄膜在氮氣的環境下再次退火,也能夠提升薄膜的電性。我們將退火後的氧化鋅薄膜進行氧、氬電漿處理,並且比較此兩種電漿處理的相同與相異之處。氧電漿與氬電漿製程分別能降低氧化鋅薄膜的電阻率至3.15×10-1Ωcm與6.7×10-3Ωcm。從光激發光譜的量測上可以發現,氧電漿處理能夠填補氧化鋅薄膜中的氧空缺使得缺陷變少,晶格結構更加完整而使電子電洞對從能帶遷躍至能帶的直接複合而放出的光增加。而從氬電漿製程後的氧化鋅薄膜的能量散佈光儀圖中可以看出,並未在氧化鋅薄膜上面偵測到氬元素。基於惰性氣體的特質,氬元素無法擴散進入氧空缺之中而使內部缺陷上的懸浮鍵失去活性,並且以這樣的方法提升導電度。我們根據以上等資訊、氧化鋅薄膜表面的型態加上相關的參考文獻,對於電漿製程提升氧化鋅薄膜導電能力的原因進行了推論。我們觀察疊加退火、摻雜以及電漿製程對氧化鋅薄膜的影響。最後證實退火、摻雜以及電漿製程此三種製程無法同時疊加起來而更顯著地提高氧化鋅薄膜的導電能力,相關原因也加以分析。最後,我們用退火及氬電漿製程將氧化鋅奈米線轉換為低電阻的氧化鋅薄膜。由於氧化鋅奈米線藉著生長過程而擁有晶格排列良好的特質,而良好的晶格排列有助於載子的傳輸。我們希望以此能提升最後形成的氧化鋅薄膜的導電特性。我們從掃描式電子顯微鏡的觀察上發現氧化鋅奈米線在經過製程後,確實的轉換為表面凹凸的氧化鋅薄膜。而以此方法製作出來的氧化鋅薄膜電阻率約為2.3×10-2Ωcm,並從X光繞射圖顯現出非常強烈的(002)晶格排列方向。
In this study, we discuss the methods of improving the conductivity of ZnO thin films. First, we fabricate ZnO thin films and ZnO nanorods by using the sol-gel technique and the hydrothermal method separately. Then we investigate the effects of annealing, doping and plasma treatment on the properties of ZnO thin films. Through the experiments, we find that the ZnO thin film can obtain its best conductivity when annealed at around 600˚C. Also, if we post-anneal them in nitrogen, we can improve the electrical properties of ZnO thin films. We compare the effects of Argon and Oxygen plasma treatment on post-annealed ZnO thin films. The resistivity of the ZnO thin films reduce greatly to the value of 3.15×10-1Ωcm and 6.7×10-3Ωcm by Oxygen plasma treatment and Argon plasma treatment. Photoluminescence spectral features with enhanced ultraviolet emission reveal that oxygen ions may diffuse into the oxygen vacancies of ZnO thin film. However, Energy dispersive spectroscopy (EDS) observation shows that there is no Argon atom in the ZnO film after Argon plasma treatment. Because of the non-reactive properties of inert gases, Argon atom may not diffuse into oxygen vacancies and deactivate the dangling bonds associated with the structure defects. We discuss the possible mechanisms for the decrease of resistivity by plasma treatment on the base of the investigations above. Also, we investigate the combination of annealing, doping and plasma treatment to increase the conductivity of ZnO thin films. We discover that the process of doping aluminum to ZnO cannot be combined with Argon plasma treatment effectively. At last, we transform ZnO nanorods into highly conductive ZnO thin film by annealing and plasma treatment. The ZnO thin films produced in this way posses a resistivity of about 2.3×10-2Ωcm and very clear preferred (002) orientation.