透過您的圖書館登入
IP:3.14.70.203
  • 學位論文

以電控微流體平臺組成具三維骨骼肌細胞微結構之生物合成致動器

Construction of Biohybrid Actuators with 3D Skeletal Muscle Cell Microstructures on Electromicrofluidic Platform

指導教授 : 范士岡

摘要


本研究利用電控微流體平臺跨尺度同時操控多種水膠與細胞之技術,配合事先設計好之電極圖案,以介電泳力將水膠溶液內C2C12骨骼肌纖維母細胞排列並使水膠交聯固化,以形成具特定三維細胞微結構之水膠微組件,並進行培養,探討不同三維微結構對於骨骼肌纖維母細胞生長與分化之影響。肌纖維母細胞在分化時會彼此融合並形成多核的肌小管,而每個肌小管為一個收縮單位,如何藉由肌纖維母細胞之排列使其在分化時能有等向性的肌小管形成,來達到最有效率之收縮力,為本研究致力之目標。本研究使用之水膠材料為Gelatin methacryloyl (GelMA),加入光起始劑後成為一種光交聯性質之水膠,在照射UV光後會由液態轉為水膠態,此特性使得電控微流體技術得以在其為液態時運用電訊號操控之,並同時操控水膠內之細胞,並在曝光後產生內部具有固定細胞微結構之水膠微組件。在C2C12於GelMA水膠中進行分化後,可做為生物合成致動器之驅動微組件。以電控微流體技術,將含有細胞之驅動微組件以及其他水膠之結構微組件組合出任意的機構,甚至是改變基本微組件的大小來達到更為複雜的結構。我們已經成功建立出一基礎生物合成致動器,其為兩個結構微組件與一個致動微組件組成的1×3結構。經過12天的培養以及分化後,此基礎生物合成致動器可受到外接電訊號產生之一均勻電場刺激而產生收縮運動。我們進一步地將此致動器與Parylene材料進行封裝,期望改善細胞在分化時使致動器蜷曲的問題,在未來也可以進一步地將此致動器連接到不同的結構物上,以及進行可撓式微型電極的封裝,使其產生具時間性與空間性之驅動能力。

並列摘要


We constructed hydrogel microcomponets accommodating patterned skeletal muscle myoblasts (C2C12) by dielectrophoresis (DEP) force on an electromicrofluidic (EMF) platform due to its advanced manipulations of various hydrogels and cells simultaneously in cross-scale by electric signal application. The effects of aligned cell patterns on differentiation and myotubes maturation were analyzed. Myboblasts fuse and form multinucleated myotubes during differentiation, and each individual myotube is consider as a motor unit. To improve the contractility with highly aligned myotubes, the arrangement of myoblasts before differentiation is critical. By using photo-crosslinkable hydrogels, gelatin methacryloyl (GelMA), and pre-designed electrode patterns, hydrogel microcomponents with 3D cell microstructures were constructed after hydrogel polymerization. After C2C12 differentiation within GelMA, the microcomponents were used as driving microcomponents in a biohybrid-actuator. Furthermore, we assembled different driving microcomponents and structural hydrogel microcomponents to construct a biohybrid-actuator on an EMF platform. After 12 days in culture and differentiation, this biohybrid-actuator was actuated by electrical stimulation with a uniform electrical field around the actuator. With the proof-of-concept studies of the biohybrid-actuators, we further encapsulated the actuators with Parylene to improve the stability of the actuator during cell differentiation. In the future, the actuator would be attached on different solid surfaces and further integrated with flexible driving electrodes.

參考文獻


[1] M. Kovač, "The bioinspiration design paradigm: A perspective for soft robotics," Soft Robotics, vol. 1, pp. 28-37, 2014.
[2] C. Majidi, "Soft robotics: a perspective—current trends and prospects for the future," Soft Robotics, vol. 1, pp. 5-11, 2014.
[3] C. Laschi, B. Mazzolai, and M. Cianchetti, "Soft robotics: Technologies and systems pushing the boundaries of robot abilities," Science Robotics, vol. 1, p. eaah3690, 2016.
[4] L. Ricotti, B. Trimmer, A. W. Feinberg, R. Raman, K. K. Parker, R. Bashir, M. Sitti, S. Martel, P. Dario, andA. Menciassi, "Biohybrid actuators for robotics: A review of devices actuated by living cells," Science Robotics, vol. 2, p. eaaq0495, 2017.
[5] S. Kim, E. Hawkes, K. Choy, M. Joldaz, J. Foleyz, and R. Wood, "Micro artificial muscle fiber using NiTi spring for soft robotics," in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, 2009, pp. 2228-2234.

延伸閱讀