在遠場光學的範圍中,光的波動特性會造成無可避免的干涉與繞射效應,使得傳統光學顯微鏡的空間解析度被限制在大約二分之一個入射光波長,此限制亦被稱為所謂光學的繞射極限。然而近一個世紀以來蓬勃發展的近場光學理論與實驗證實,當光在近場光學的範圍中,也就是遠小於一個光波長的距離(約數奈米)以內,完全不受限於光的繞射極限限制而可以得到極高的空間解析度,因此近場光學開拓了一個不同於以往傳統光學的新研究領域,諸如光學漸逝波、表面電漿子、奈米光子學等等研究接著紛紛被提出。其中近場光學顯微鏡(SNOM)的開發更是近場光學領域中相當關鍵的研究,同時近場光學顯微鏡亦是最重要的近場光學量測工具之一。 英國科學家辛格(E.H.Synge)於西元1928年提出了近場光學的概念,西元1972年亞許(E.A.Ash)與尼可斯(G. Nicholls)利用三公分波長的微波證實了近場光學的概念。不過受限於當時的科學技藝尚無法研製出良好的近場光學探針以及精準的探針高度控制系統,使得可見光波段的近場量測始終無法順利進行。直至西元1982年掃描式電子穿隧顯微鏡技術(STM)問世以後,瑞士IBM研究中心的普爾(D.W.Pohl)等人遂利用STM的探針控制技術以及毛細玻璃管製成的探針成功完成了可見光波段的近場量測,同時架構起最初的近場光學顯微鏡。 近年來近場光學顯微鏡各系統的發展已漸趨成熟,唯獨各種形式的近場光學顯微鏡探針之研究持續的被討論著,可見這方面仍存在著相當的發展空間。於是本論文從光纖式近場光學顯微鏡探針系統的實際研究與製作出發,進一步探討不同的光束偏極態在光纖式近場光學顯微鏡探針中所產生的表面電漿現象,以及因此造成的不同聚焦特性,以至於此聚焦特性對近場光學顯微鏡解析度所產生的影響。在本論文的最後,嘗試將自行製造的光纖式近場光學顯微鏡探針與光纖偏極態控制等技巧結合,實際架構在外差式近場干涉儀系統之上,最終成功的得到了近場的光學與相位資訊,並且在與先前的觀測結果相較之下,證實有效的降低了近場光學訊號中的雜訊且獲得了更清晰的近場干涉影像。
In conventional far-field optics, the resolution of optical microscope system is constrained by the diffraction limit. However, the research in the 20th century verified that optical limit can be overcome in near-fields. Furthermore, near-field optics has advanced to a new research region as many new topics have developed over the years. These new fields include evanescent optics, surface-plasmon resonance and nano-photonics, etc. Scanning near-field optical microscopy (SNOM) is another important research in near-filed optics, and it is also a crucial tool to get near-field optical information. Recently, the development of scanning near-field optical microscope system is almost complete. However, the researches and discussions of SNOM probe types and its effects are still relatively less explored. For this reason, I investigated the aperture-SNOM probes and fabricated it to complete my thesis. Moreover, I tried to explore further to see if the Surface-Plasmon Polaritons (SPPs) effects exit at the surface of silver-coated tips with a hope to enhance the resolution of SNOM. I thus simulated it by using FDTD simulation software and discussed the influence of different polarization states in SNOM. At last, in order to ensure the ability of the probes that I fabricated, I utilized the probes in the near-field optical heterodyne interferometer and obtained the near-field optical and phase images which obtained better results than previous works.