透過您的圖書館登入
IP:216.73.216.179
  • 學位論文

表面彎曲誘導式微量液滴驅動系統及其生化應用

Curved Surface Induced Microdroplet Actuation System and Its Biochemistry Application

指導教授 : 朱元南

摘要


本研究中利用彎取之疏水性表面以及一親水性玻璃基材組合成一驅動晶片,可使液滴表面張力之作用方向改變,引導液滴進行移動,我們利用此一現象發展了一套嶄新之液滴驅動方法,並建立了力學模型以解釋液滴移動之現象。為建構真實之驅動系統,我們利用與DNA Microarray相同之概念,使用三軸精密移動平台裝載探針架,帶動四根探針下壓薄膜進而同時驅動四片空腔晶片,可輕易達成高體積效率與高輸出之平行多晶片液滴驅動。由於此驅動方法無施加電場及磁場,可確保液滴內物質於安定狀態下進行傳送。 為使反應自動化,空腔晶片使用玻璃雷射鑽孔技術加工出四個直徑0.8 mm之液體注入與抽出孔,以及兩直徑0.5 mm之壓力平衡孔,而晶片玻璃基材設計為可回收清洗並更換膠模與間隔用雙面膠後重複使用,間隔用雙面膠以多層疊層製作而成,整體晶片之製作成本非常低廉,並探討其厚度對驅動性能之影響。我們所設計以及製作之晶片可直接以及快速地手動進行液滴之注入與抽出,並且我們發展了自動化注入與抽出之系統,可應用於原先需以手動作業之生化反應,將其以封包形式於一小晶片上進行實驗。 我們對一共發現5種此一驅動方法之獨有特性:液滴與探針同速移動、液滴歸位、液滴粉體混和、液滴比例分裂以及多晶片平行驅動。液滴與探針同速移動最高可達到每秒10 cm/s之操作速度,並且使用移動式混合法可使層流狀態之粉體液滴於3秒內達到完全混和,並且此驅動方式具備獨特之歸位現象,不需刻意將探針對準液滴,可有1 cm以上之間距,並且此方法可對液滴進行不等比例 (1:1) 之分裂動作,我們所發現之此些流體特性以及其實驗數據對此驅動方法於日後之生化應用及系統最佳化設計有巨大幫助。最後展示了此系統可進行多晶片平行驅動之能力,對於工業化大量批次反應之應用具有極大之潛力。

並列摘要


We developed a novel method of droplets actuation simply by using the surface tension distribution of a curved surface of hydrophobic plastic membrane and a flat hydrophilic glass substrate without applying outer electrical or magnetic power. There are two basic modes of actuation : droplet moving with probe and droplet homing and three application modes : mixing of powder droplets, droplet ratio splitting and multiple chips simultaneous actuation. The basic three-dimensional explanation of two basic modes has been established and the actual velocity relationship between probes and droplets had been found and the experimental performance data for de-ionized water of the two basic modes and droplets mixing and split had been worked out. Since there is no need of outer power source, the material inside the droplet is stable and can be applied on stably transporting or manipulating droplets carrying polar or ionized particles such as DNA or protein molecules and since multiple chips can be simply actuated simultaneously by the same probe sets, just like the concept of DNA microarray and the chip of actuation need no microstructure thus the cost is extremely low, with the low cost of batch laser drilling technique and the double-sided tape spacer, the potential of industry application will be infinity.

參考文獻


[3] 賴秋吉。2006。封閉迴圈高輸出式微流道PCR晶片與系統之開發。碩士論文。臺北市:國立台灣大學生物產業機電工程學研究所。
[4] Ahn, C. H., J.-W. Choi, G. Beaucage, J. H. Nevin, J.-B. Lee, A. Puntambekar, and J. Y. Lee. 2004. Disposable Smart Lab on a Chip for Point-of-Care Clinical Diagnostics. Proceedings Of The IEEE. 92. 154-173.
[6] Darhuber, A. A., J. P. Valentino, J. M. Davis, and S. M. Troian. 2003. Microfluidic actuation by modulation of surface stresses. Applied Physics Letters 82. 657-659.
[7] Guttenberg, Z., H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scribaa and A. Wixforth. 2005. Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip. 5. 308-317.
[8] Wu, H., T. W. Odom, D. T. Chiu, and G. M. Whitesides. 2002. Fabrication of Complex Three-Dimensional Microchannel Systems in PDMS. J. AM. CHEM. SOC. 125. 554-559.

延伸閱讀