透過您的圖書館登入
IP:3.137.220.120
  • 學位論文

非晶相銦鎵鋅氧化物薄膜電晶體之電性及穩定度分析

Electrical Characterization and Reliability Study of Amorphous IGZO TFTs

指導教授 : 劉致為
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在本論文中,著重於非晶相銦鎵鋅氧化物(α-IGZO)之薄膜材料分析與薄膜電晶體之電特性。相較於非晶相矽電晶體,α-IGZO薄膜電晶體之高電子遷移率(> 10 cm2/V-s)、高開/關比(> 107)、高穿透率,以及在製程上,可以在室溫中沉積並且可以有效的控制薄膜的均勻性等優點,α-IGZO 將是下一代薄膜電晶體很好的通道材料。 首先,利用廣波長之光源,量測在不同波段之α-IGZO薄膜之光吸收係數。配合Tauc plot的作圖計算,定義出α-IGZO薄膜之光能帶隙,並計算出α-IGZO薄膜之Urbach energy 以分析不同製程參數下的能矽中之缺陷態分布。經由上述方法,發現α-IGZO與氫反應後之Urbach energy變得較大,亦指出α-IGZO與氫反應後,其tail states之寬度較寬,使得α-IGZO 薄膜電晶體之電特性較差。 與單閘極操作相比,雙閘極操作下之α-IGZO TFTs擁有較大之驅動電流以及較小之次臨界擺幅。由於下閘極介電層以及上閘極介電層(包含蝕刻阻擋層與鈍化層)之氧化矽與氧化氮於製程中皆使用矽甲烷(SiH4),將使得α-IGZO之上通道與下通道處有較多氫與α-IGZO反應,使得α-IGZO上通道與下通道之缺陷亦較多。α-IGZO薄膜電晶體於雙閘極操作下,有較多載子傳導於較少缺陷處(通道中間),故其電子遷移率較高,由於上述現象,於雙閘極操作下之α-IGZO薄膜電晶體擁有較大之驅動電流,且其次臨界擺幅較小。 對於元件穩定度測試,探討由於偏壓應力施加導致元件失真的原因以及物理機制,例如:電性與偏壓應力分析等等。然而,元件的穩定度測試以及物理特性分析就變得特別重要。因此,對元件做於閘極上施加電性壓力測試,包含正偏壓與負偏壓之電性壓力,並探討元件電性衰減的物理機制。 下閘極操作之α-IGZO薄膜電晶體之製程中,主要使用氧化矽與氮化矽作為蝕刻阻擋層以及鈍化層,而上述材料製程中都會使用SiH4氣體,使得氫會進入α-IGZO上通道中並發生反應,由於下閘極操作下之α-IGZO薄膜電晶體易受到上通道品質之影響,故在蝕刻阻擋層製程中,相對於較高SiH4氣體量之氧化矽製程,利用較低SiH4氣體量之製程沉積氧化矽之α-IGZO薄膜電晶體之電性獲得改善。 由於下閘極操作下之α-IGZO 薄膜電晶體易受到上通道品質之影響,為了提升α-IGZO薄膜電晶體電性,可利用負電荷儲存於上閘極絕緣層中,使通道中電子被庫倫斥力推離上通道之高缺陷處,使電晶體之電性可以獲得改善。由於氧化鋁(Al2O3)為一帶有負電荷之材料,與氧化矽做為鈍化層之α-IGZO薄膜電晶體相比,利用氧化鋁鈍化層之α-IGZO薄膜電晶體有較高載子遷移率以及較佳操作穩定度。

並列摘要


In this dissertation, the material analysis and electrical characterization of amorphous InGaZnO thin film transistors (α-IGZO TFTs) are demonstrated. As compared with hydrogenated amorphous silicon TFTs, α-IGZO TFTs have high on/off current ratio (~107), high carrier mobility (>10 cm2/V-s), high optical transparency, low processing temperature, and good uniformity. The material analysis of α-IGZO film is investigated. The optical absorption coefficient, Tauc gap, and Urbach energy are measured using a monochromator. Due to the optical analysis of α-IGZO films, high Urbach energy of hydrogen-incorporated α-IGZO film is found, and leads to high hydrogen-related subgap defects in α-IGZO film. The double gate operation α-IGZO TFTs can improve the electric performance such as higher drive current and lower subthreshold slope than that of single gate operation. The low density of hydrogen-related defect at the central channel is responsible for such enhancement. The electrical reliability is a very important issue for α-IGZO TFTs. The electrical reliability of α-IGZO TFT has been reported by the charge trapping mechanism and subgap state creation which would lead to VT shift. Therefore, the electrical reliability of dual gate α-IGZO TFTs are analyzed including positive bias instability and negative bias instability. The hydrogen-related defects degrade the electrical performance of α-IGZO TFTs. The low-hydrogen fabrication of etch-stop layer is used for bottom gate operation α-IGZO TFTs. As compared with α-IGZO TFTs using high-hydrogen fabrication, the electrical performance of α-IGZO TFTs using low-hydrogen fabrication of etch-stop layer is improved due to the decrease of hydrogen-related defects. Finally, the Al2O3-passivated α-IGZO TFTs reveal the higher mobility and better reliability than the SiOX-passivated devices. The negative fixed charges in the Al2O3-passivation layer can push electrons away from the defective top SiOX/InGaZnO interface by Coulomb repulsion, and the mobility enhancement was observed. The repulsion of electrons away from the poor top SiOX/InGaZnO interface can avoid the electron trapping in the top SiOX and then improve the reliability.

參考文獻


[1]. K. H. Cherenack, N. S. Munzenrieder, G. Troster, “Impact of Mechanical Bending on ZnO and IGZO Thin-Film Transistors,” IEEE Electron Device Lett., vol. 31, no. 11, 2010.
[2]. J. K. Jeong, J. H. Jeong, J. H. Choi, J. S. Im, S. H. Kim, H. W. Yang, K. N. Kang, K. S. Kim, T. K. Ahn, H.-Joong Chung, M. Kim, B. S. Gu, J.-Seong Park, Y.-Gon Mo, and H. D. Kim, “12.1-Inch WXGA AMOLED Display Driven by Indium-Gallium-Zinc Oxide TFTs Array,” SID Digest, vol. 39, 2008.
[3]. K. Kaneko, N. Inoue, S. Saito, N. Furutake, and T. Hayashi, “A Novel BEOL Transistor (BETr) with InGaZnO Embedded in Cu-Interconnects for On-chip High Voltage I/Os in Standard CMOS LSIs,” VLSI Technology, 2011.
[4]. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, 432, 2004.

延伸閱讀