透過您的圖書館登入
IP:3.145.201.47
  • 學位論文

V對於CoCrFeMnNiVx高熵合金薄膜微結構與機械性質之影響

Microstructures and Mechanical Properties of CoCrFeMnNiVx High Entropy Alloy Films

指導教授 : 薛承輝
本文將於2024/08/05開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本實驗利用磁控濺鍍系統,以單晶矽(100)為基底,控制其他參數不變,通過改變V靶材不同的射頻功率,共鍍製備了CoCrFeMnNiVx (x = 0, 0.07, 0.3, 0.7, 1.1) 高熵合金薄膜,並討論了V的加入對該薄膜成分、結構與機械性質的影響。XRD的結果表明,當x=0, 0.07時,薄膜為單一的fcc結構;x = 0.3, 0.7, 1.1時,X-Ray繞射峰變寬,通過TEM結果得知,這是因為隨著V的含量增加,薄膜的結構趨於非晶態。TEM結果也表明,當x = 0, 0.07時,薄膜中存在大量雙晶,同時APT的結果表明,這兩個參數下的V原子完全嵌入晶格中,沒有產生析出物,這種微結構使得薄膜的機械性質顯著提升。利用奈米壓痕試驗,檢測了薄膜的微硬度和楊氏模數,可發現V的加入可使薄膜的微硬度有所提升,由約6.8 GPa提高至8.7 GPa。在x = 0.07時,楊氏模數達到最大值206.4 GPa,更高含量的V會使楊氏模數下降,這是由於薄膜中非晶相的產生,導致抵抗變形能力的降低,符合TEM的結果。薄膜的屈服強度、極限抗壓強度、壓縮延性及斷裂韌性由In-situ奈米壓痕試驗機經奈米柱壓縮試驗檢測。該壓縮應力-應變曲線表明,當V的含量為x = 0.07時,屈服強度可達為3.8 GPa,極限抗壓強度可達約4.9 GPa,並保持了約13%的壓縮延性。同時,x ≥ 0.3時,在壓縮後的奈米柱上發現剪切帶,且對應的應力-應變曲線呈現鋸齒流變,這些現象均表明非晶態的產生。觀察壓縮後的奈米柱的TEM結果得知,薄膜中產生的奈米雙晶在壓縮過程中有效緩衝了塑性形變,使薄膜的機械性質有大幅提升。

並列摘要


In the present work, CoCrFeMnNiVx (x = 0, 0.07, 0.3, 0.7, 1.1) high entropy alloy films were fabricated by magnetron co-sputtering. For low contents of V, typical face-centered cubic (fcc) peaks were identified in X-ray diffraction patterns. With the increasing V content, the diffraction peaks became broadening and the formation of amorphous phase was promoted. TEM observations showed abundant nanotwins in films with low V contents and the transition from fcc to amorphous structure with the increasing V content. The 3D APT reconstruction results revealed no precipitate in the as-deposited films (x = 0, 0.07). Mechanical properties of the films were studied using nanoindentation and micro-pillar compression tests. The films exhibited high hardness ranging from 6.8 to 8.7 GPa. The serrated flow associated with shear banding showed in the stress-strain curves for films with x ≥ 0.3. When x = 0.07, excellent yield strength of ~3.8 GPa and ultimate compressive strength of ~4.9 GPa were achieved with little sacrifice in ductility. The presence of nanotwins contributed to the strain hardening effect.

參考文獻


[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303.
[2] C. Li, J. Li, M. Zhao, Q. Jiang. Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys, J. Alloys Compd. 475 (2009) 752–757.
[3] J. Pan, T. Dai, T. Lu, X. Ni, J. Dai, M. Li. Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering, Mater. Sci. Eng., A 738 (2018) 362–366.
[4] Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature 563 (2018) 546.
[5] D. Li, C. Li, T. Feng, Y. Zhang, G. Sha, J.J. Lewandowski, P.K. Liaw, Y. Zhang. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures, Acta Mater. 123 (2017) 285–294.

延伸閱讀