透過您的圖書館登入
IP:3.144.143.31
  • 學位論文

金屬奈米薄膜結構的非線性光學性質與侷域光場

Optical nonlinearity and localization of metallic nano thin film

指導教授 : 蔡定平

摘要


本論文的研究工作主要是探討在奈米光學領域中,光與奈米物質進行交互作用後的非線性光學性質與光場侷域化性質,特別是針對在金屬奈米結構與光場耦合時的非線性與侷域性的機制與結果。其中在奈米金屬結構與電磁波作用時將會激發一種基本且顯著的現象—即是表面電漿子(surface plasmon polariton)或侷域電漿子(localoized plasmon),其產生激發或共振的條件是由製作特殊的金屬結構與形狀,並設計適當金屬材料的介電常數分佈,另外考慮與激發調制之入射光波長、入射角度、以及偏振方向能滿足其色散條件(dispersion relation),此物理現象會造成光場在奈米金屬薄膜結構中形成侷域化的效應,並且因為表面電漿子共振產生光場增強現象。本研究基於此物理現象與概念,將製作不同種類的金屬薄膜結構,利用各式奈米光學量測系統,研究金屬奈米結構的光學非線性吸收機制,並探討相關金屬氧化物系統激發表面電漿子的物理性質與應用。 第一部份是對於純金連續薄膜的非線性光學行為作一詳細研究,利用自行架設的光軸掃描術分析非線性吸收與非線性折射的機制,配合線性吸收光譜的實驗結果,建立金屬受光場激發之帶間躍遷(interband transition)的二能級(two level)模型,而在研究奈米金顆粒膜的吸收機制時,二能級模型也恰好能適用於電漿子激發的能量吸收模式,如此可以了解在同一穩定金屬材料下,不同形貌造成的表面效應而影響奈米結構的光能量吸收機制,並探討在非共振與共振情況下的物理能級意義。 在了解對金屬奈米薄膜與奈米金屬顆粒的非線性光學機制與激發表面電漿子的行為之後,第二部份則是研究一複雜的金屬與介電材質之混合物薄膜系統,本研究針對的是氧化銀奈米薄膜系統,以顯微pump-probe系統與光軸掃描術對其結構的非線性光吸收與光熱作用造成的結構變化行為做一系統的實驗,分析材料結構變化相對應對遠場觀察之光散射場增強的結果,並以光學顯微鏡與電子顯微鏡的實驗歸納氧化銀照光區域之結構變化過程與受熱分解機制,其中氧化銀受熱分解時銀顆粒析出與聚集行為將會因為群體金屬顆粒被光場激發之侷域表面電漿子的共振與散射,造成結構表面的近場光強度增強與光場侷域化,並同時影響遠場的觀測結果,而最後將報告具有這樣特殊光學行為的氧化銀奈米薄膜應用在超高密度光碟片結構中的實驗結果。 第三部份,將討論一種以金屬材料做成的奈米天線結構,定性地探討其近場之電磁行為,其中利用適當結構可激發表面電漿子之共振,並利用天線本身的偶級作用(dipole interaction),將可操控電磁侷域場分佈的位置與區域大小,或是光場增強比率。 綜合上述,本論文的研究將可了解金屬奈米結構與光場耦合時的光場非線性行為與侷域化的結果,並了解激發金屬中的表面電漿子之條件與其物理性質,希望可在往後奈米光子學元件的發展上,對於操控表面電漿子的形成,或是如何應用侷域表面電漿子的電漿子學(Plasmonics)中提供一些想法與貢獻。

並列摘要


In this thesis, we studied the interactions of light and metallic nanostructures at the nanometer scale. First, the optical properties of gold continuous film and particulate film were studied. The absorption spectroscopy and Z-scan method are used to characterize the linear and nonlinear absorption properties. The experimental results indicated the different transitions occurred in these gold nanostructures, which were the interband transition in the gold film and the surface plasmon resonance in gold nanoparticles. The theoretical calculations also showed the conditions of surface plasmon for these two structures, which was in a good agreement with the experimental results. Second, silver-oxide nanometric thin film was studied. The changes of the local structures were monitored by both optical microscope and SEM, and the nonlinear absorption properties were measured by using Z-scan and pump-probe systems. We found the decomposition process happening by the optical-thermal interactions, and the silver nanoclusters becomes more in the conditions of higher input powers and then tends to aggregate in the focal spot. This results in the excitation and resonance of localized plasmons by the external optical fields. We also observed the nonlinear scattering, near-field enhanced and localized fields by using both far- and near-field measurements. Third, the bow-tie nano-antenna was theoretically studied for its near-field optical properties. We found the enhanced and localized fields are generated due to the dipole interaction and plasmon excitation. We also could control and optimize the exact location and the magnitude of enhanced fields by the proper design. In summary, we hope these results would show more significant insights of the optical properties and physical mechanism of the metallic nanostructures, which might be applied for the future nanophotonics and plasmonics.

參考文獻


1.4 J. B. Pendry, Phys. Rev. Lett. 85, 3966(2000).
1.5 J. D. Jackson, Classical Electrodynamics, Wiley, New York (1975).
1.6 E. Abbe, “Betrage zur Theorie der Microscope und der Microscoposchen Wahrehmung”, Arch. Mikrosk. Anst 9, 413(1873).
1.7 L. Rayleigh, “On the theory of optical images with special reference to the microscope”, Philos. Mag. 5, 167(1896).
1.8 E. A. Synge, Phil. Mag. 6, 356(1972).

延伸閱讀