透過您的圖書館登入
IP:3.135.183.187
  • 學位論文

仿生合攏-張開之雙翼受力與流場量測

Measurement of Forces and Flow Fields for Biomimetic Clap-Fling Wings

指導教授 : 朱錦洲 張建成

摘要


本實驗討論Weis-Fogh機制,也就是雙翼合攏-張開運動在兩種週期性運動模式下翼與翼之間受力與流場的影響:雙翼在張開過程具有移動速度與雙翼張開不具有移動速度的兩個運動在升力係數的表現,以追求高升力、低阻力、平移過程的穩定升力,吾人實驗參數的雷諾數約8500,Strouhal number 為 1.71、2.28與2.85,利用後緣為轉動軸心進行二維合攏-張開機制的高升力驗證。 由實驗結果指出,合攏-張開機制確實具有高升力,在Strouhal number 為 2.85,雙翼轉動與移動同時發生的合攏-張開機制,產生的升力係數為單翼轉動與移動同時發生的1.5倍。在張開機制結束後才移動產生的平均升力係數,具有良好的,而邊轉邊走的運動在打開機制結束後的平移過程無新的升力係數峰值,並且平移過程升力係數表現不佳。 吾人使用數位視訊攝錄影機與電子耦合攝影機即時拍攝翼板周圍的流場,並利用粒子影像測速儀軟體分析兩種雙翼合攏-張開運動下,流體運動的渦度場與速度場。結果顯示在第二週期雙翼個別張開同時移動產生尾跡捕捉的流場,雙翼同向靠近時,前緣的渦漩接觸到後一起向翼板下方流動,並且在翼板上方形成巨大的前緣渦,雙翼做合攏的動作會破壞前緣渦,並在兩翼板間產生新的渦漩,雙翼做張開的動作會將原先被破壞的渦漩重新組成新的渦漩流入兩翼板間,並且在翼後緣產生後緣渦漩,彼此接觸後向上流入,並與因兩翼板產生新的前緣渦而下沉的渦漩會合後,流向翼板表面並沿著翼板邊界層到翼板前緣下方形成渦漩。兩翼分離過程增加後緣渦的大小,並產生新的前緣渦,所以在兩翼上方會出現複雜的渦漩。

並列摘要


The research discusses the Clap-Fling mechanism for the wing-wing interaction of force and flow field at the two kinds of kinematic motion during periodic motion: the wings have translational velocity during fling mechanism and compare with no translational velocity ones. I use Reynolds number and Strouhal number to define the experiment parameters. I measure lift and drag coefficient as functions of non-dimensional time per wing for a range of Strouhal numbers between 1.71 and 2.85 at Reynolds number 8540. I also use DV and CCD to capture the instantaneous streamlines around each wing and then use PIV software flow manager to analysis the vortices and velocity field for this two kinds Clap-Fling motion. My results verify there are two pair vortices between wings during Clap-Fling mechanism and also confirm that Clap-Fling has high lift mechanism. At Strouhal number 2.85, lift coefficient has better enhancement for fling mechanism compare with translational velocity. For the case that translational velocity after fling mechanism at Strouhal number 2.85, lift coefficient has better average lift coefficient during translation. For the Clap-Fling that fling mechanism with translational velocity, lift coefficient enhancement are 50% higher then one wing for Strouhal number 2.85. For the Clap-Fling two different motions, lift coefficient enhancement of fling with translational velocity are also 50% higher then translational velocity after fling for Strouhal number 2.85.

參考文獻


32.謝政達(指導教授:朱錦洲). 2004. “運用PIV與PTV量測技術於單一渦漩生成之研究”,國立台灣大學應用力學所碩士論文
35.蘇效賢(指導教授:朱錦洲). 2005. “仿生懸停下撲翼機構之流場與受力量測”, 國立台灣大學應用力學所碩士論文.
36.蔡長志(指導教授:朱錦洲). 2006. “仿生撲翼之二維流場與受力量測”, 國立台灣大學應用力學所碩士論文.
1. Chang, C. C. (1992). Potential flow and forces for incompressible viscous flow. Proc. R. Soc. Lond. A437: 517-525.
2. Dickinson, M. H. and Götz, K. G. (1993). Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Exp. Biol. 174, 45-64.

被引用紀錄


謝政達(2009)。以力元理論之觀點剖析昆蟲飛行的氣動力機制〔博士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2009.10679

延伸閱讀