透過您的圖書館登入
IP:18.119.133.96
  • 學位論文

先進微影技術在化學感測器及光電元件上之應用

Applications of Advanced Lithography on Chemical Sensors and Optoelectronic Devices

指導教授 : 陳學禮

摘要


先進微影技術改善了傳統的光學微影及電子束微影技術的缺點,具有快速方便的優點,因此被廣泛的運用在光電領域上。在本篇論文中,我們運用奈米壓印微影技術及奈米轉印微影技術,成功的製作出次波長一維波浪狀連續金屬膜結構與二維六方最密堆積孔洞陣列金屬膜結構。由於次波長週期性金屬結構具有激發表面電漿共振的性質,因此可以運用在化學感測器上。我們成功的利用一維波浪狀連續金屬膜結構製作出一高靈敏度的化學感測器,並比較一維感測器與二維感測器的不同。此外,我們也成功的運用雙面奈米壓印微影技術製作出一高深寬比之光柵結構,此光柵結構具有光學上的雙折射性,因此可以做為光學波板使用。我們藉由調整壓印時的製程參數,控制光柵結構的填充因子與深度,製作出一適用於紅光波段633nm的八分之一波板。同時藉由疊加數個波板,我們可以調整出任意的相位延遲量,並將此相位延遲系統發展至各個所需的工作波段。最後我們利用膠體微影技術,製作出六方最密堆積孔洞陣列的金屬膜結構,此種金屬膜結構同時具有高度的光學穿透率以及良好的導電性,因此有潛力做為光伏打元件的透明導電極。藉由調整膠體微影的參數,我們可以控制孔洞陣列的週期與大小。最後我們實際將此金屬透明導電極運用在有機太陽能電池上,發現其效率能夠比傳統的ITO玻璃更高,具有相當的潛力與發展性。

並列摘要


Advanced lithography has been widely applied on the field of optoelectroincs. Because of the advantages of fast manufacturing and convenience, advanced lithography is competive againest tranditional photolithography and e-beam lithography. In this article, we successfully fabricated one-dimensional corrugated structure and two-dimensional hexagonal hole array on gold films. Because these subwavelength periodical metal structures are capable to induce surface plasmon resonance, they have the potential to be chemical sensors. We fabricate a chemical sensor based on one-dimensional corragted gold film and demonstrate that this chemical sensor possesses extremely high sensitivity. Moreover, the comparison between the chemical sensors based on one-dimensional and two dimensional strucuture is also carried out in this article. Besides, we used the dual side nanoimprint lithography to fabricate a high aspect ratio gratings strucuture on PC substrate. This subwavlength gratings structure has demonstrated the form birefringence, and thus has the potential to be optical wave plate. With contolling the filling factor and trench depth of the gratings structure, we successfully fabricate a 1/8 wave plate that works at 633nm. Moreover, with stacking numerical wave plate together, we can obtain any amount of phase retardation. This stacking-wave plate method is suitable for any working wavelength if we presicely control the trench depth of each gratings-based wave plate. In the last, we use the colloidal lithography to fabricate a transparent electrode based on metal nanomesh structure. For applying on photovoltaic devices, the nanomesh metal electrode has the advantages of highly optical transmittance and excellent conductivity. The period and diameter of the hexagonal hole array on nanomesh can be tuned by the fabricating parameters of colloidal lithography. The organic solar cells associated with the transparent nanomesh electrode demonstrate a high power conversion efficiency, and we conclude that the metal nanomesh electrode is a promising candidate for replacing traditional conductive oxide such as ITO.

參考文獻


5. S. Y. Chuang, H. L. Chen, S. S. Kuo, Y. H. Lai, and C. C. Lee,Opt. Express 16, 2415-2422 (2008)
J. Vac. Sci. Technol. B 20, 2872, (2002)
9. H. Bethe, Phys. Rev. 66, 163 (1944)
11. F. J. Garcia-Vidal, L. Martin-Moreno, Appl. Phys. Lett. 83, 4500 (2003)
17. P. Hariharan, Meas. Sci. Technol. 9, 1678 (1998)

延伸閱讀