透過您的圖書館登入
IP:18.117.189.7
  • 學位論文

氮化鎵多節奈米柱及氧化鎵鋅奈米針的穿透式電子顯微研究

Transmission Electron Microscopy Studies of GaN Multiple-section Nanorods and GaZnO Nanoneedles

指導教授 : 楊志忠
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


中文摘要 我們用穿透電子顯微鏡研究了有機金屬氣相層積成長的多節氮化鎵奈米柱與分子束磊晶成長的氧化鎵鋅奈米針結構。在一根多節的氮化鎵奈米柱內,當應用於n-型摻雜時,通入高流量的矽烷,可以發現在n型氮化鎵奈米柱的側壁有一個氮化矽薄層形成,我們研究著重在逐漸變細的生長過程。減少在脈衝生長供給三甲基鎵的持續時間,該傾斜面在一根奈米柱的邊緣逐漸從均勻的{1-102}截面轉動進入{1-101}面。在完成錐形成長後,當一個恆定的三甲基鎵供給時間再次用於形成下一個均勻的截面時,該傾斜面返回到{1-102}面。因為改變錐形部分的斜面角度,量子井得以沉積在錐形部分的側壁,即使奈米柱頂端{1-101}面的金字塔結構,難以實現量子井成長。 有關氧化鎵鋅奈米針的研究,在氧化鎵鋅奈米針和同時生長出來的氧化鎵鋅薄膜的局部區域,藉由原子尺度的穿透電子顯微鏡圖像觀察結晶方向,分析繞射圖案的影響。發現到在奈米針不同的位置, c軸方向略有不同。在該薄膜和奈米針“根”之間的邊界,c軸有顯著的旋轉。該氧化鎵鋅薄膜結構與一個不使用銀奈米粒子作為催化劑的氧化鎵鋅薄膜是完全不同的,其結構是柱狀。在這種情況下,c軸方向的成長不傾斜,但會在c平面扭曲。而在銀奈米粒子作為催化劑後成長的氧化鎵鋅奈米針,銀原子會分佈在氧化鎵鋅奈米針內。

並列摘要


Abstract We study the nanostructures of MOCVD-grown multiple-section GaN nanorods (NRs) and MBE-grown GaZnO nanoneedles (NNs) with transmission electron microscopy (TEM). In a multiple-section GaN NR, besides the discovery of a SiNx thin layer on the sidewall of an n-GaN NR when a high silane flow rate is applied for n-type doping, we focus the study on the growth process of a tapering section. It is found that during this process of reduced supply duration of TMGa in pulsed growth, the slant facets at the edge of an NR gradually turn from the {1-102}-plane in the uniform section into the {1-101}-plane. After the completion of the tapering growth, when a constant TMGa supply duration is used again for forming the next uniform section, the slant facets return to the {1-102}-plane. Because of the changing slant-facet angle in the tapering section, sidewall QW deposition in the tapering section can be achieved even though the QW growth on the {1-101}-plane in the pyramidal structure at the NR top is difficult. Regarding the study on GaZnO NN, the local crystal orientations in the GaZnO NNs and the simultaneously grown GaZnO thin film are investigated by analyzing the diffraction patterns of atomic-scale TEM images. It is found that the local c-axis varies slightly from place to place in the NNs and the thin film. At the boundary between the thin film and the “root” of an NN, the c-axis may rotate significantly. This structure is quite different from that in a GaZnO thin film without using Ag NPs as the catalyst, in which a column structure is observed. In this situation, the c-axis growth does not tilt, but twists in the c-plane. After the GaZnO growth with Ag NPs as the catalyst, Ag atoms distribute in the GaZnO NNs.

參考文獻


[10] A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, Jpn. J. Appl. Phys. 43, L1524 (2004).
[19] F. Demangeot, J. Gleize, J. Frandon, M. A. Renucci, M. Kuball, D. Peyrade, L. Manin-Ferlazzo, Y. Chen, and N. Grandjean, J. Appl. Phys. 91, 2866 (2002).
[20] F. Demangeot, J. Gleize, J. Frandon, M. A. Renucci, M. Kuball, D. Peyrade, L. Manin-Ferlazzo, Y. Chen, and N. Grandjean, J. Appl. Phys. 91, 6520 (2002).
[21] H. S. Chen, D. M. Yeh, Y. C. Lu, C. Y. Chen, C. F. Huang, T. Y. Tang, C. C. Yang, C. S. Wu, and C. D. Chen, Nanotechnology 17, 1454 (2006).
[22] H. W. Huang, C. C. Kao, T. H. Hsueh, C. C. Yu, C. F. Lin, J. T. Chu, H. C. Kuo, and S. C. Wang, Mater. Sci. Eng. B 113, 125 (2004).

延伸閱讀