透過您的圖書館登入
IP:3.19.63.106
  • 學位論文

鋼版印刷厚膜及其轉印於可撓性基板之壓電致動器之研製

The Transfer Technique of Stencil Printed Piezoelectric Ceramic Thick Film onto Flexible Substrate for Actuator Application

指導教授 : 吳文中
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究藉由鋼版印刷法於矽基板上印製微米等級之PZT壓電厚膜,並且結合轉印技術,將厚膜轉印至可撓性基板,完成壓電致動器元件。 為了順利製作高品質PZT厚膜,會探討攪拌脫泡製程的技術、漿料壓電粉末固含量及燒結參數。首先透過不同的攪拌轉速,觀測厚膜之表面形貌,發現攪拌脫泡轉速在1500 rpm,漿料中的團聚顆粒將被打散,其表面粗糙度(Ra)會由4.3 µm下降至1.2 µm,降低極化時擊穿之可能;接著透過改變漿料內的壓電粉末固含量,由75 %提升至80 %,使PZT厚膜之鈣鈦礦相更加顯著。在燒結參數的討論中,發現PZT厚膜在高於850 °C燒結溫度時,厚膜之成份組成將會改變,原因為鉛在高溫時揮發並與矽發生反應,產生焦綠石相,此結果將導致元件鐵電特性不佳,因此本研究後續利用金200 nm與二氧化矽 750 nm做為阻擋層,防止矽於高溫時與鉛反應,將原本壓電厚膜之介電損耗由17 %下降至7 %。 壓電致動器元件可以透過壓電材料PZT,將外加的電能轉換為機械能,並以位移為元件之輸出形式,為了增加壓電致動器之位移輸出,本研究提出適合用於鋼版印刷法之轉印技術,將原本沉積在矽基板上之壓電厚膜轉移至可撓性基板,藉此解決可撓性基板無法耐高溫熱處理的限制,最後結合鋼版印刷法及轉印技術,成功地製作出以軟性電路板為基板之壓電致動器,並在施加交流電場 180 VP-P 時,最大尖端位移之峰對峰值為 0.42 mm。

並列摘要


In this study, we develop an integrated fabrication process combining with stencil printing method and transfer technique to fabricate flexible piezoelectric actuators. In order to deposit high quality PZT thick films, the stirring and defoaming process will be discussed. The agglomerated particles are dispersed when the stirring speed is 1500 rpm for 3 minutes. Finally, the surface roughness (Ra) is reduced from 4.3 µm to 1.2 µm, reducing the possibility of breakdown during the poling process. Moreover, the PZT thick films are printed on silicon substrate and compared in different sintering temperature. We found that lead atoms can diffuse into the silicon substrate to form second phase degrading the piezoelectric performance without diffusion barrier. Then, Au/SiO2 bilayer as diffusion barrier is inserted and compared in different thickness. From experimental results, the second phase can be blocked by 200/750 nm, reducing the dielectric loss of the piezoelectric thick film from 17 % to 7 %. Besides, the properties of silicon substrate such as rigidity and deformation unsustainability limit the applicable which require large deformation. Polymer flexible substrates are suitable for large deformation but cannot sustain high temperature in the heat treatment process. Therefore, this study proposes a new transfer technique to transfer PZT thick films from silicon substrate to flexible printed circuit board (FPCB). Eventually, the actuator is fabricated by stencil printing method and transfer technique. This actuating performance is verified by measuring tip displacement under different driving voltage. The result shows that the max tip displacement of actuator is 0.42 mm under 180 VP-P.

參考文獻


[1] M. H. Dickinson, C. T. Farley, R. J. Full, M. Koehl, R. Kram, and S. Lehman, "How animals move: an integrative view," science, vol. 288, no. 5463, pp. 100-106, 2000.
[2] A. D. Marchese, R. Tedrake, and D. Rus, "Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator," The International Journal of Robotics Research, vol. 35, no. 8, pp. 1000-1019, 2016.
[3] V. Vikas, E. Cohen, R. Grassi, C. Sözer, and B. Trimmer, "Design and locomotion control of a soft robot using friction manipulation and motor–tendon actuation," IEEE Transactions on Robotics, vol. 32, no. 4, pp. 949-959, 2016.
[4] P. Maeder-York, T. Clites, E. Boggs, R. Neff, P. Polygerinos, D. Holland, L. Stirling, K. Galloway, C. Wee, and C. Walsh, "Biologically inspired soft robot for thumb rehabilitation," Journal of Medical Devices, vol. 8, no. 2, 2014.
[5] R. F. Shepherd, A. A. Stokes, J. Freake, J. Barber, P. W. Snyder, A. D. Mazzeo, L. Cademartiri, S. A. Morin, and G. M. Whitesides, "Using explosions to power a soft robot," Angewandte Chemie International Edition, vol. 52, no. 10, pp. 2892-2896, 2013.

延伸閱讀