透過您的圖書館登入
IP:18.227.209.41
  • 學位論文

壓電材料驅動無閥門式微幫浦之模擬分析

ANALYSIS OF PIEZOELECTRICAL ACTUATED VALVELESS MICROPUMP

指導教授 : 張正憲

摘要


本文利用CFDRC 商業軟體作為數值分析的工具,模擬無閥門式微幫浦並進而修改,比較各種型式的無閥門式微幫浦在各個頻率的淨流量差異。由於單腔室的無閥門式微幫浦的淨流量有限,因此我們用兩個微幫浦做組合以提升微幫浦的效能,最常見的微幫浦組合有串聯以及併聯。其中併聯為了連通兩個微幫浦會產生多餘的流道,故體積比較大,雖然淨流量優異,但微小化不易,因此我們我們在微幫浦的組合的型式是以串聯為主,並藉由搭配不同的頻率組合來找出最適合微幫浦串聯的運作方式。將漸張/漸縮管式微幫浦串聯在一起,流體為水時,輸入波形為正弦波,給予固定電壓80伏特,兩個壓電片執行同頻率反相位角的作動,從數值計算的結果可以得知,於頻率4.8KHz時流量為134 uL/min,為單一腔室的1.64倍,而兩個壓電片執行倍頻模式,也就是其中一個壓電片給予f頻率、另一個壓電片給予2f的頻率並給予一個90度的相位角延遲,數值計算結果可以得知,在頻率f為3.4KHz時淨流量為244.49 uL/min,為單一腔室微幫浦的2.99倍,增幅效果極佳。

關鍵字

無閥門 微幫浦 壓電材料

並列摘要


We use the software CFDRC to do the research about the valveless micropump which is driven by piezoelectrical materials. We also modify valveless micropump to other type valveless micropump and compare flow rate in each frequency. In order to increase the flow rate, we connect two valveless micropumps in serials and run in anti-phase mode and double frequency mode to obtain large flow rate. Double frequency mode is that one piezoelectrical material runs in f KHz and another runs in 2f KHz with phase angle different. The flow rate of anti-phase is 134 uL/min in 4.8 KHz, and flow rate of double frequency is 244 uL/min in f=3.4KHz . The efficiency of double frequency mode is higher than that of anti-phase mode.

並列關鍵字

piezoelectrical micropump valveless

參考文獻


1. H. Anderson, W. van der Wijngaart, P. Nilsson, P. Enoksson, and G. Stemme,“A valve-less diffuser micropump for microfluidic analytical systems”, Sensors and Actuators B., Vol. 72, pp.259-265, 2001.
2. B. Fan, G. Song and F. Hussain,“Simulation of a piezoelectrically actuated valveless micropump“, Smart Mater. Struct., Vol.14, pp.400-405, 2005.
3. Y. Feng, Z. Zhou and G. Wang,“A fluid-solid coupling modal analysis of piezoelectrically actuated microjet and the frequency design of nozzles layout”, SPIE, Vol. 5718, pp.243-253, 2005.
4. T. Gerlach, M. Schuenemann and H. Wurmus,“A new micropump principle of the reciprocating type using pryramidic micro flow channel as passive valves”, Journal of Micromechanics and Microengineering, Vol. 5, pp. 199-201, 1995.
5. Laser, D. J. and Santiago, J. G.,“A review of micropumps”, J. Micromech. Microeng., Vol. 14, pp. 35-64, 2004.

被引用紀錄


張峰懷(2018)。壓電式無閥門微幫浦在不同彈性及幾何條件下的行為之數值研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201800248
謝廷睿(2016)。多共振壓電式無閥門微幫浦在不同管徑和彈性模數的行為研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201700044
蔣智文(2016)。壓電式無閥門壓克力微幫浦振動腔在不同彈性模數及不同支撐下的行為研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201610259

延伸閱讀