透過您的圖書館登入
IP:3.145.60.166
  • 學位論文

一參數化颱風模式適用性之探討

On the Accuracy of a Parameterized Typhoon Model

指導教授 : 陳慶生

摘要


在許多觀測與研究中均顯示,南海中有很強烈的慣性流現象,尤其是在颱風通過時或之後。為了模擬此類上層海洋對於移動颱風的反應機制,我們需要其風場資訊做為動力的輸入。因海上實測與衛星遙測所能取得的颱風風場資料其時間與空間的密集度在直接應用上均有很大的不足,故一般在海洋的應用是以參數化方式建立一移動颱風的模擬風場,作為後續研究的風場來源。但普遍常用的模型如Rankine vortex和Holland(1980)所提模式是否真適用於南海範圍的颱風,其相關檢驗在國內的研究中卻並不多。 本論文即利用取自日本氣象廳的颱風特徵參數,代入Holland的風場計算模式,求出颱風風速的空間分布,並與SSM/I衛星風場資料作比對,藉以了解此一颱風模式的可行性。結果在所比對的8個颱風之中,有4個本文歸類為屬於好的比對者,其特徵是颱風結構較完整且形狀接近正圓,因為此模式的初始設定便是一軸對稱的壓力場分布型態,故符合此單純對稱情況的颱風便能套用此模式,這也顯示Holland模式關於颱風的基本架構是合理的,足以用來代表其主要風場。而比對結果較差者,本文歸納出主要原因是其颱風結構較不完整,例如在最後風力減弱即將消散時;或是颱風形狀較偏橢圓,例如其強度正經歷變動或附近有其他天氣型態時,Holland的單純模式便無法直接模擬套用,必須加以適當的修正;像是將壓力場分布改為不對稱的形式,或是調整颱風的特徵參數以較符合實際的情況,此方面的探討還需要後續更進一步的研究。 另外,本文亦針對1998至2000年在南海4個錨碇海流測站實際發現的慣性流運動,用Holland模式作出空間中一定點之風場在颱風期間的時間序列變化,討論該觀測到的慣性流事件與當時通過測站附近的颱風路徑和風場變化時間尺度的關聯性。結果顯示在南海中的颱風其k值常會有接近1的情形(k乃一無因次參數,定義是k = U/f L,式中 U為颱風前進速度,f為科氏參數,L為颱風範圍大小,在此是以17 m/s之風速直徑代入。),當k = 1即表示將颱風大小尺寸除以颱風前進速度所得之時間尺度(稱為滯留時間)與南海當地的慣性週期相等,這便可說明了為何南海經常能觀測到慣性流的事件,因為當颱風風場在其右側繞轉的週期與南海慣性週期接近時,兩者即會產生共振的現象,使得慣性運動能被加強而持續較久或影響較深。

並列摘要


Inertial currents are frequently observed in the South China Sea (SCS), especially during or after the passages of typhoons. To realize the mechanism of the upper-ocean response to a moving typhoon, researchers usually set up a simulated wind field for the specific case. However, only a few studies were made to examine the accuracy of mostly used typhoon models. In this paper, the typhoon wind speeds of Holland (1980) model by utilizing the characteristic parameters from Japan Meteorological Agency are compared to those of SSM/I observations. It is found that some typhoons with such features as a near circular shape and a sound structure have better simulated results. This is due to the original assumption of a symmetric pressure distribution of the model. Thus it is also proved that Holland model can reasonably describe the major wind field of a typhoon. Moreover, the model is applied to the typhoon cases associated with certain inertial motions observed by 4 current stations in SCS. It is shown that if the residence time of a typhoon matches the local inertial period, the resonance may occur and the winds will induce more persistent inertial motions in the ocean.

參考文獻


陳譽愷,2006:颱風造成之南海內慣性運動。國立台灣大學海洋研究所碩士論文,95頁。
Anthes, R. A., 1982: Tropical Cyclones –Their evolution, structure and effects. American Meteorological Society, 208 pp.
D’Asaro, E. A., C. C. Eriksen, M. D. Levine, P. Niiler, C. A. Paulson, and P. V. Meurs, 1995: Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., Vol. 25, 2909–2936.
Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., Vol. 14, 1129–1151.
Goodberlet, M. A., C. T. Swift, and J. C. Wilkerson, 1990: Ocean surface wind speed measurements of the Special Sensor Microwave/Imager (SSMI). IEEE Trans. Geoscience Remote Sens., Vol. 28, 823–827.

被引用紀錄


郭怡君(2013)。台灣附近海域對西行颱風通過反應之數值模擬研究〔博士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.00286

延伸閱讀