本研究主旨為開發一具有疏水性表面之液珠操控平台,藉由真空幫浦以及電磁閥施加負壓於疏水性表面底下的氣室,拉伸疏水彈性表面,改變液珠表面自由能,使液珠兩端產生自由能差進而驅動液珠移動,並對平台進行液珠蒸發、蛋白質沾附等實驗,以驗證平台可用於生化實驗。本平台製造過程為利用微機電製程技術製造氣室陣列母模後,翻模成型為一由高分子聚合物組成之氣室陣列,再藉由低功率二氧化碳雷射在表面上進行蝕刻,使液珠在表面上呈現懸浮狀態,故具有較高之表面自由能易於操控液珠。二氧化碳雷射所蝕刻之表面可藉由接觸角量測儀與雷射掃描顯微鏡,量測到平台之疏水性表面具有粗糙度可使液珠呈現高接觸角的懸浮狀態,再利用表面自由能公式計算液珠之表面自由能,進而利用熱力學定理,推估表面受氣壓拉伸後液珠運動的傾向,而表面受到氣壓拉伸所產生的變形與幾何型態,則由固體力學薄膜變形的理論,配合有限元素法數值計算,推估彈性表面受到氣體壓力後所產生的變形量,並以此變形量與幾何型態探討當所施加的壓力不同時,液珠與表面的接觸行為差異。本研究所開發出之微液珠操控平台,因是利用氣壓拉伸疏水性表面,對於液珠內部檢體並無影響,故具有高度生物相容性,適合用在化學合成、細胞培養等對環境具有高度要求之生化實驗上,為驗證平台確實可應用於生化實驗上,在平台上進行蛋白質螢光檢測以及奈米金粒子探針長晶之呈色應用於DNA檢測的測試。期許未來研究成果可應用於微流體生化分析系統,並在能源開發與環境工程等領域上都可憑藉液珠操控的特性,使得此操控平台廣泛地應用。
The subject of this master thesis is developing a pneumatic open-surface microfluidic platform. By using pump and magnetic-electric valve to apply minus pressure in the chamber which induces deformation of membrane, let the droplet have a gradient of Gibbs free energy and be manipulated by platform. The chamber mold is fabricated by MEMS fabrication, then pouring PDMS in the mold to form the chamber assembly. The last procedure of platform fabrication is applying CO2 laser to etching the surface of platform, so that the surface is hydrophobicity. In order to observe the hydrophobic surface deformation and morphology, apply S.E.M and color 3D laser scanning microscopic to prove the platform surface has micro-structure to enhance droplet and the membrane can be deformed. Besides, this thesis proves the platform can be used in biology and chemical experiment by protein fluorescence detection and visual and spectrophotometric detecting of DNA mismatches. The results of this thesis can be applied in micro total analysis systems and energy engineering, because of the droplet manipulation.