透過您的圖書館登入
IP:3.15.187.205
  • 學位論文

邊界層動力在颱風的雙眼牆形成過程中所扮演的角色

The Role of the Boundary Layer Dynamics in Secondary Eyewall Formation

指導教授 : 吳俊傑

摘要


由於眼牆置換所造成的強度變化對於颱風強度預報十分重要,雙眼牆颱風以及外眼牆生成的過程已被許多觀測以及數值模擬文獻記載與討論。近年來,邊界層非平衡動力在外眼牆生成過程中的重要性亦逐漸受到重視,許多文獻亦從不同的觀點提出理論試圖詮釋兩者的關係。本研究主要探討在第二眼牆生成前不同階段的颱風結構中,邊界層流場會有怎樣不同的反應以及所扮演的角色的變化。 本研究採用非線性邊界層診斷模式,針對2008年辛樂克颱風在第二眼牆生成前不同時期的渦旋結構,診斷相對應的邊界層流場結構,並詳加探討邊界層動力對於不同時期的渦旋結構的不同反應。接著,本研究使用擬合方法得到不同時期辛樂克的渦旋基礎結構,再以非線性邊界層診斷模式模擬邊界層對於不同渦旋基礎結構的反應。結果顯示在雙眼牆生成前6個小時,辛樂克的渦旋所具備的渦旋基礎結構,由於負渦度梯度區域的徑向分布範圍較廣,使得邊界層在某一特定半徑能夠反應出微弱的上升運動;而在雙眼牆生成前21個小時,辛樂克的渦旋基礎結構則不存在這樣的特徵。此外,本研究設計一連串的敏感性實驗,來測試不同渦旋基礎結構中,邊界層對於梯度風場在不同位置的梯度風擾動會有怎樣的反應。結果顯示雙眼牆生成前6個小時的渦旋基礎結構中,若梯度風擾動位於特定半徑處,邊界層能夠有較大的反應,且該特定半徑範圍與前一實驗中,在雙眼牆生成前6個小時的渦旋基礎結構中診斷出來的上升運動區域的所在半徑是重合的,再次強調了渦旋基礎結構對於邊界層流場反應的重要性。另外,本研究所使用的非線性邊界層診斷模式,雖然其原始設計是診斷邊界層對於渦旋反應至平衡態時的結構,而這樣的邊界層平衡結構也能提供使用者較為清晰的邊界層流場資訊,但是真實的渦旋結構變化是很快速的,因此邊界層的平衡態結構也是難以在現實中存在的。為了要探討邊界層對於變動中的渦旋結構有怎樣的反應,本研究調整了模式的架構,使非線性邊界層診斷模式的上邊界條件在積分的過程中隨時間更新,因此邊界層並不會被積分到穩定態。結果顯示調整後的邊界層模式保有調整前的診斷能力,能夠在第二眼牆生成前於特定範圍的半徑內診斷出持續的上升運動,除此之外也能在較外圍半徑處診斷出平衡態邊界層結構中看不到的瞬時上升運動。 總結而言,本研究分別從不同面向,探討在颱風辛樂克第二眼牆生成前,不同時期的渦旋結構以及其所對應的邊界層結構的變化。結果顯示,在第二眼牆形成至少六小時前,渦旋發展出的基礎結構使得邊界層在該處能有較好的動力環境,使得梯度風擾動在該處能引發更強的非平衡反應,進而使得該處具備更適當的動力條件有利第二眼牆形成。

並列摘要


Mature Tropical Cyclones (TCs) often experience secondary eyewall formation (SEF). In light of different boundary layer (BL) dynamical pathways to SEF proposed in the literature, this study aims to explore the role of BL dynamics in SEF. Previous studies suggested that the unbalanced responses in the BL can serve as an important mechanism for SEF. Other studies also showed that the local gradient of vorticity in an environment of low absolute vorticity can induce frictionally forced updraft and the consequent positive feedback can serve as the key for SEF. Adopting a nonlinear diagnostic BL model, this study attempts to understand how flow in the BL and lower troposphere responses to the vortex structure aloft (mostly in gradient wind balance) and the differences of BL responses to different stages of vortex before SEF. Results show that the applied BL model can well capture the major flow characteristics prior to SEF that was identified in previous studies. Next, by fitting the prescribed vortex structure, we have the idealized gradient wind profiles that can represent the TC’s primary structure. The idealized profiles are used as the BL model’s upper boundary condition for the idealized control run. Results show that 6 hours before SEF, without any gradient wind perturbation, the BL model can diagnose larger values of supergradient wind and vertical motion. Furthermore, sensitivity experiments are conducted by adding a bump in the prescribed gradient wind profile at different radius. It is shown that the frictional updraft appears stronger while the added gradient wind bump is located at some specific radii. Moreover, to further examine the BL response to the evolving TC structure aloft, this study presents a modified nonlinear diagnostic BL model in which the upper boundary condition is updated during the integration. Results show that the modified BL model can capture a range of radii with persistent secondary upward motion maximum while the upward motions at outer radii dissipate rapidly.

參考文獻


鄭傑仁,2016:WISHE機制對於颱風雙眼牆形成的角色。國立台灣大學大氣科學系,碩士論文,97頁。
連國淵,2009:颱風路徑與結構同化研究—系集與卡爾曼濾波器。國立台灣大學大氣科學系,碩士論文,87頁。
Abarca, S. F., and M. T. Montgomery, 2013: Essential dynamics of secondary eyewall formation. J. Atmos. Sci., 70, 3216–3230.
Didlake, A. C., and R. A. Houze, 2011: Kinematics of the secondary eyewall observed in Hurricane Rita (2005). J. Atmos. Sci., 68, 1620–1636.
Evensen G (1994a) Inverse Methods and data assimilation in nonlinear ocean models. Physica (D) 77: 108–129

延伸閱讀