透過您的圖書館登入
IP:18.188.142.69
  • 學位論文

燃煤火力發電廠燃燒後混搭薄膜碳捕捉程序

Hybrid Membrane Process for Post-combustion CO2 Capture from Coal-fired Power Plant

指導教授 : 陳誠亮
本文將於2024/08/05開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


燃燒後碳捕捉是減少燃煤電廠二氧化碳排放的一個有效方法。已經有若干針對不同碳捕捉技術的研究,其中最常見且成熟的二氧化碳捕捉技術為胺吸收法,然而此程序極為耗能且成本高昂。透過薄膜進行氣體分離的碳捕捉程序展現了低能耗且低成本的潛力,然而先前的研究多專注在具備二氧化碳選擇性的膜上,關於氮選擇性膜的文獻則相當稀少。   在本研究中,兩種性質的薄膜皆會應用於程序當中。Polaris® 薄膜將作為一典型的二氧化碳選擇性薄膜,而氮選擇性薄膜的性質將在一範圍內討論,其中涵括選擇性200以下及滲透率10 m3(STP)m-2h-1bar-1以下的薄膜。本研究利用模擬軟體Aspen Plus® 來進行燃燒後碳捕捉薄膜程序的設計、模擬及分析,並針對典型550百萬瓦火力發電廠設計了多級薄膜程序,其目標為捕捉至少90%排放的二氧化碳。   本研究提出了同時應用兩種薄膜的混搭薄膜程序,並且針對不同的薄膜價格因子來進行最適化及經濟分析,最終展示了最佳設計變量與薄膜性質之間的關係。此結果可為薄膜性質發展方向提供建議。

並列摘要


Post-combustion CO2 capture is a promising way to reduce CO2 emissions at the coal-fired power plants. Several studies have been conducted regarding a wide variety of capture techniques and the conventional amine-based process is the most common method used for CO2 separation, but this process is energy-intensive and costly. Gas separation membrane process shows potential as an energy-efficient, low-cost CO2 capture option. However, most of the previous researches focused on CO2-selective membrane, and there’s limited literature regarding the application of N2-selective membrane.   In this study, CO2-selective and N2-¬selective membrane are both applied to the process. Polaris® membrane was served as a typical CO2-selective membrane; on the other hand, membrane properties of N2-selective membrane with permeance up to 10 m3(STP)m-2h-1bar-1 and selectivity up to 200 were considered. Membrane process for post-combustion CO2 capture has been designed, simulated and analyzed by using Aspen Plus® simulation software, and multi-stage membrane separation process has been designed for capturing at least 90% CO2 from a typical 550MW subcritical coal-fired power plant.   Hybrid membrane process applying both CO2- and N2-selective membranes has been proposed. Optimization and economic analysis have been applied based on the different cost factors, which reveal the relationship between the optimal design variables and membrane properties.

參考文獻


[1]. Oliver, J.G.J., Trends in global CO2 emissions : 2016 report. 2016, PBL Netherlands Environmental Assessment Agency.
[2]. (IEA), I.E.A., CO2 emissions from fuel combustion : highlights. 2017, International Energy Agency (IEA).
[3]. Olivier, J.G., G. Janssens-Maenhout, and J.A. Peters, Trends in Energy Supply and Consumption, in Trends in global CO2 emissions: 2013 Report. 2013, PBL Netherlands Environmental Assessment Agency Hague. p. 32-41.
[4]. Figueroa, J.D., et al., Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program. International Journal of Greenhouse Gas Control, 2008. 2(1): p. 9-20.
[5]. Rochelle, G.T., Amine scrubbing for CO2 capture. Science, 2009. 325(5948): p. 1652-1654.

延伸閱讀