透過您的圖書館登入
IP:18.216.251.37
  • 學位論文

亞鐵氰化鐵及其類似物離子儲存電極之製備及性質研究

Preparation and characterization of ion-storage electrodes based on ferric hexacyanoferrate and its analogues

指導教授 : 林正嵐

摘要


亞鐵氰化鐵(ferric hexacyanoferrate, FeHCF) 和其類似物,其晶格空隙允許多種陽離子於氧化還原反應時於其間進行嵌入/嵌出,在水相電解液中具有能良好的穩定性,使其成為離子電池的新興電極材料。本研究以沉澱法製備FeHCF以及其類似物鐵氰化鎳(nickel hexacyanoferrate, NiHCF)和鐵氰化銅(copper hexacyanoferrate, CuHCF),並在含有K+以及NH4+水相電解液中,分析其電化學性質和離子儲存效能。FeHCF在三者中具有最高電容量值,分別為69 mAh/g (@ 50 mAh/g with K+)與76 mAh/g (@ 50 mAh/g with NH4+)。FeHCF使用NH4+作為載子時,以200 mA/g進行100次充放電循環後,可維持87.1%的初始電容量。FeHCF使用500 mAh/g進行充放電時,可保有99%的最高電容量。NiHCF以200 mA/g進行100次充放電循環後,維持86.5% (K+)及93.2%(NH4+)的初始電容量,於500 mAh/g充放電速率維持了83% (K+)及72%(NH4+)的最高電容量。雖然CuHCF的電容量、循環穩定性和高速充放電效能略遜於前兩者,但其具有較高放電電位平台0.80 V (vs. Ag/AgCl with K+)與0.84 V (vs. Ag/AgCl with NH4+)。

並列摘要


Ferric hexacyanoferrate (FeHCF) and its analogs allow a variety of cations to insert/extract during their redox reactions, making them considered potential candidates for battery applications. In this study, FeHCF and its two analogues, nickel hexacyanoferrate (NiHCF) and copper hexacyanoferrate (CuHCF), are prepared by a precipitation method. Their electrochemical properties and ion storage performance in K+ or NH4+ containing aqueous electrolytes are investigated. FeHCF exhibited the best ion storage capacity of 69 mAh/g with K+ and 76 mAh/g with NH4+ at 50 mA/g discharging rates. FeHCF has excellent cycling stability and rate performance when using NH4+ as carriers. FeHCF maintains 87.1% initial capacity after 100 cycles of successive charge/discharge processes at 200 mA/g. NiHCF shows excellent cycling stability and rate performance with either K+ or NH4+ being used as carriers. It maintains 86.5% (K+) and 93.2% (NH4+) initial capacity after 100 successive charge/discharge cycles at 200 mA/g. CuHCF has a lower capacitance than the other two materials, but it shows a higher discharge voltage platform of 0.80 V (vs. Ag/AgCl) with K+ and 0.84 V (vs. Ag/AgCl) with NH4+.

參考文獻


1. Moore, J. and B. Shabani, A critical study of stationary energy storage policies in Australia in an international context: the role of hydrogen and battery technologies. Energies, 2016. 9(9): p. 674.
2. Goodenough, J.B. and K.-S. Park, The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 2013. 135(4): p. 1167-1176.
3. Lu, L., X. Han, J. Li, J. Hua, and M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. Journal of power sources, 2013. 226: p. 272-288.
4. Eftekhari, A., Potassium secondary cell based on Prussian blue cathode. Journal of Power Sources, 2004. 126(1): p. 221-228.
5. Lu, Y., L. Wang, J. Cheng, and J.B. Goodenough, Prussian blue: a new framework of electrode materials for sodium batteries. Chemical communications, 2012. 48(52): p. 6544-6546.

延伸閱讀