透過您的圖書館登入
IP:3.135.183.1
  • 學位論文

用水旋風分離器分離酵母菌懸浮液之分離性能

The separation performance of yeast suspension using hydrocyclone

指導教授 : 黃國楨

摘要


本研究分別以10 mm大小的水旋風分離器來進行實驗,並以單支及串聯連接進行酵母菌懸浮液之分離,探討進料速度、壓力、分流比等操作條件對分離效率的影響。並比較活性污泥及乾芒草粉的實驗結果,了解水旋風分離器在生化分離上的應用。 在分離酵母菌懸浮液時,實驗結果顯示,總分離效率會隨著進料速度或分流比的增加而增加。在進料速度12 m/s下,當分流比自0.4增加至10,總分離效率會增加3倍。而在單支及串聯連接下的分級曲線也會隨著分流比的增加而上升。 活性污泥在進料速度12 m/s時,將分流比的數值從0.4增加至5.0時總分離效率可提升76%。在分流比數值為0.8時,芒草粉的分割粒徑會隨著進料壓力的增加而有遞減的情況發生,其範圍從12 μm降至8 μm。 而流體在水旋風分離器中的滯留時間都會小於0.2秒,時間相當短暫。三種物料的粒子平均粒徑之順序為:芒草粉>活性污泥>酵母菌,因此酵母菌懸浮液的粒子離心力最小。

並列摘要


A 10-mm hydrocyclone is used in this study, while separated the yeast particle suspension in single or connected in series. The operating conditions, such as inlet velocity, pressure drop and split ratio, on the separation efficiency are discussed. In order to understand the application of the hydrocyclone in biochemical industry, in this study were also to observe the experimental results of activated sludge and Miscanthus particle (grass particle). The results show that an increase in inlet velocity or split ratio increases the total separation efficiency in yeast suspension separation. The total separation efficiency improve tripled when split ratio increases from 0.4 to 5 under the inlet velocity in 12 m/s. An increase in split ratio lead to higher partial separation efficiency curve in single or connected in series of hydrocyclone. When separate the activated sludge, the total separation efficiency improve 76% when split ratio increase from 0.4 to 5. When separate grass powder, the particle cut-size decreases from 14.33 μm to 10μm with increasing the pressure drop in split ratio 0.8. And the fluid residence time of the hydrocyclone will be less than 0.2 sec, that is quite short. The order of the particle mean diameter with those materials are:grass particle> activated sludge> yeast powder, therefore, the minimum centrifugal force of those marterial is yeast powder.

參考文獻


Bicalho, I.C., Mognon, J.L., Shimoyama, J., Ataide, C.H., Duarte, C.R., “Effects of operating variables on the yeast separation process in a hydrocyclone”, Science Technology, 48, 915-922 (2013).
Bicalho, I.C., Mognon, J.L., Shimoyama, J., Ataide, C.H., Duarte, C.R., “Separation of yeast from alcoholic fermentation in small hydrocyclones”, Separation and Purification Technology, 87, 62-70 (2012).
Bo, Z.W., Yi, M., You-hai, J., “Simulation and experiment of flow field in axial-flow hydrocyclone”, Chemical Engineering Research Design, 89, 603-610 (2011).
Chu, L., Chen, W., Lee, X., “Enhancement of hydrocyclone performance by controlling the inside turbulence structure”, Chemical Engineering Science, 57, 207-212 (2002).  
Cilliers, J.J., Harrison, S.T.L., “The application of mini-hydrocyclones in the concentration of yeast suspensions”, The Chemical Engineering Journal, 65, 21-26 (1997).

延伸閱讀