透過您的圖書館登入
IP:18.226.169.94
  • 學位論文

多層核殼微米圓盤的光子奈米噴流現象研究

The study of photonic nanojets of the multi-layer core-shell microdisks

指導教授 : 劉承揚

摘要


本論文研究三種金屬薄殼(金、銀、銅)的聚二甲基矽氧烷微米圓盤,在三種雷射光(671nm、532nm、405nm)照射下產生的光子奈米噴流現象。研究方法分為理論計算和實驗量測兩個部份,在理論計算方面,本論文使用時域有限差分法來模擬不同金屬核殼微米圓盤在不同直徑和不同入射光波照射下,光子奈米噴流的光場分佈和光強度的變化。在核殼微米圓盤製程方面,本論文使用半導體製程和翻模技術先做出核心微米圓盤,再利用真空濺鍍系統將圓盤鍍上金屬薄殼而形成薄殼微米圓盤。在實驗量測方面,本論文自行架設出高靈敏度光學顯微鏡系統來觀察核殼微米圓盤的光子奈米噴流現象,並撰寫電腦程式分析光子奈米噴流現象的各種參數,包括噴流焦距、半高全寬、衰減長度等。經由模擬與實驗結果的互相比較,本論文發現不同的金屬薄殼材料能夠改變微米圓盤產生的光子奈米噴流特性,例如使聚焦效果變好、增加焦距、或增加聚焦強度,未來可應用於高解析度光學顯微鏡中以觀察各種奈米級的目標物。

並列摘要


The photonic nanojets generated by a laser source in three metal shells (gold, silver, and copper) each enclosing a polydimethylsiloxane microdisk are studied. Lasers of wavelengths 671 nm, 532 nm, and 405 nm are used as a light source for each microdisk. This study is divided into two parts—theoretical calculation, and experimentation. In theoretical calculations, the finite-difference time-domain method is used to simulate the intensity distribution of photonic nanojets at different metal shell, diameters, and incident wavelengths. The core microdisks are created using semiconductor manufacturing technologies. A sputtering system is used to plate metal shells on the dielectric core. The measurement of photonic nanojets in the core-shell microdisks is performed in experiment with a high sensitivity optical microscope system. A computer program is written to analyze the parameters of photonic nanojets, including radial shift, full width at half maximum, and decay length. The simulation results are compared with experimental data. The study found the photonic nanojet characteristics can be changed by different metal shell materials. In the future, this technique can be applied to high-resolution optical microscopes for observing nanoscale objects.

參考文獻


[41] 孫振, “二維光子晶體耦合共振光能量分配器之設計與分析”, 淡江大學機械與機電工程學系碩士班學位論文(pp. 1-64), 2012
[42] 王永勛, “單顆介電微米圓球之光子奈米噴流的數值分析與實驗”, 淡江大學機械與機電工程學系碩士班學位論文(pp. 1-71), 2013
[43] 陳建榕, “光子奈米噴流現象於單顆微米介電圓盤之研究”, 淡江大學機械與機電工程學系碩士班學位論文(pp. 1-115), 2014
[2] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves”, Journal of computational physics, vol. 114, no. 2, pp. 185-200, 1994
[10] P. Grabiec, T. Gotszalk, and J. Radojewski, “SNOM/AFM microprobe integrated with piezoresistive cantilever beam for multifunctional surface analysis”, Microelectronic engineering, vol. 61, pp. 981-986, 2002

被引用紀錄


楊悠池(2017)。反射式金屬薄殼微米柱之多角度奈米光子噴流研究〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2017.00367
鄭宇倫(2017)。核殼微型光柵之奈米光子噴流研究〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2017.00322
羅偉傑(2016)。核殼微米光纖探針之設計、製造與光學量測〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2016.00233
王益宏(2016)。穿透式與反射式核殼微米方柱之奈米光子噴流現象研究〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2016.00142

延伸閱讀