透過您的圖書館登入
IP:216.73.216.100
  • 學位論文

應用遺傳演算法與類神經網路於結構最佳化設計之研究

Optimum Design of Structures by Genetic Algorithms and Artificial Neural Network

指導教授 : 張永康

摘要


本研究將採用遺傳演算法和類神經網路的混合法作結構的最佳化設計。遺傳演算法乃依據生物界之“物競天擇、適者生存”之理論所發展出的一套數學最佳化理論。藉由複製、交配與突變等三個基本運算元來搜尋空間上之最佳點。類神經網路乃依據生物神經網路訊息傳遞的資訊處理方式所創立的一種學習模型,只要利用了巨量的人工神經元加以連結,再經由反覆的訓練以做出適當的判斷,並將所做的訓練記憶起來,就可以求得最佳值。因此本文利用遺傳演算法優越的搜尋能力,搜尋出較適合類神經網路訓練的權重值,並透過遺傳演算法的演算過程,使類神經網路的訓練過程能夠更快速、更準確,以利於執行結構的最佳化設計。 數值分析中將使用ANSYS有限元素分析軟體作結構分析,範例中包含壓電複材層板及一般材料桁架結構的輕量化設計和三次元量床之動態與靜態之最佳化設計。期望本研究之結果能對結構的設計提供一個實用且有效率的方法。

並列摘要


A hybrid method combined Genetic Algorithm and Artificial Neural Network will be adopted in this study. Genetic Algorithm is a well developed mathematic optimization theory based on the theory of “Survival of the fittest” in nature. The new design can be obtained by three basic operators: reproduction, crossover, and mutation. Neural network is a self learning model basing on the translations and procedures of creature-like neural network information. Once the connection from tremendous artificial neuron was established, the network could make the judgement of parameters by repeating trainings. By the superior searching ability of Genetic Algorithm, the optimum weights for neural network can be obtained precisely and efficiently. Structural analysis would be performed by a finite element analysis software ANSYS in this study. The optimum design of the piezoelectric composite material, truss and coordinate measuring machine structures would be demonstrated in the numerical analysis. We hope the result of this research would provide a practical and effective method for structural design.

參考文獻


[7]林仲甫,“結合基因演算法及模擬退火法於結構最佳化設計之研究”,私立淡江大學航空太空工程學系研究所碩士論文,2005。
[1]Darwin, Charles Robert,”達爾文物種原始 / (英)達爾文Charles Robert Darwin撰; 馬君武譯”, 新文化叢書,1957.
[2]Holland, J. H., Adaptation in Natural and Artificial System University of Michigan Press, Ann Arbor. , 1975.
[3]Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1989.
[5]Hajela, P., "Genetic Search-An Approach to the Nonconvex Optimization Problem, " AIAA Journal, pp.1205-1210, Vol.28, No.7, 1990.

被引用紀錄


陳炫光(2016)。應用蝙蝠演算法於結構最佳化設計之研究〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2016.00691
周于文(2014)。應用蜂群演算法於結構最佳化設計之研究〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2014.00598
薛宇辰(2013)。以類神經網路作鋼結構最佳化設計〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2013.01224
施智勇(2013)。以類神經網路作桁架及構架結構最佳化設計〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2013.00897
黃宗鴻(2013)。PSO-SA混合法於結構多目標最佳化之應用〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2013.00838

延伸閱讀