透過您的圖書館登入
IP:3.139.239.16
  • 學位論文

以靜電力場輔助電鍍法製備具微米構形電致色變薄膜及其性質之研究

A Study on the Electrostatic Field-assisted Electrodeposition of Micropatterned Electrochromic Thin Films and Their Properties

指導教授 : 林正嵐

摘要


本研究應用了以靜電力場輔助定電位電鍍法製備普魯士藍 (PB)、聚苯胺(PAni) 以及其複合 (PB/PAni) 微米構形薄膜,並比較經由接觸起電程序與未經由接觸起電程序之工作電極於電鍍過程中獲得之 i-t曲線。 製備普魯士藍 (PB)、聚苯胺 (PAni) 以及其複合 (PB/PAni) 微米構形薄膜之實驗條件分別控制在相同電位下,而析鍍不同之時間參數。 接著將所製備出具微米構形之工作電極以光學顯微鏡(Optical microscope, OM)、電子顯微鏡 (Scanning Electron Microscope, SEM) 與表面輪廓儀( Surfcorder ) 進行表面形態的初步觀察以及實際的高低差測量。 並將普魯士藍 (PB) 薄膜總模厚定義為 T ( Thickness ) 、微米構形內外高低差為 ∆H,將 ∆H/T × 100% 定義為薄膜之選擇性。 另外,於本實驗觀察到製備具有微米構形薄膜其電致色變性質皆較優於相同電鍍參數平整之薄膜,因此本實驗做了 EIS 阻抗分析並將獲得之數據作出在複數平面 Z" 對Z' 的 Nyquist 圖接著選取適合之等效電路圖並利用ZView進行擬合將會獲得 Rs 、 Rct 之阻抗值。由數值可知道具微米構形之薄膜其電荷轉移所需之活化能 (Rct) 相較於平整薄膜還要小。

並列摘要


The misropattern of Prussian Blue, Polyaniline and composite Prussian Blue/Polyaniline thin film is prepared by potentiostatic method. In comparison, two types of working electrodes show different i-t curve during electrodepostion. One of these working electrodes is attached by electrostatic film, and the other one is not. Experiment is executed by constant potential for different time. The resultant micropattern of Prussian Blue have been characterized by means of Optical microscope (OM), Scanning Electron Microscope (SEM) and Surfcorder analysis. The selectivity of micropattern defined formula as ΔH/Tt×100%, where T is thickness of Prussian Blue film, ΔH is concave micropattern of height. In this study, It is found that with the same electrodeposition time, micropatterned thin films possess that electrochromic properties superior to the thin films without micropatterns. Therefore,impedance analysis of electrochemical impedance spectroscopy for electrochromic thin films has been carried out in the study.And will obtain Rs,Rct of impedance value. It is found with the charge transfer resistance values, micropatterned thin films possess that was also lower than the thin films without micropatterns.

參考文獻


1.Thalladi,V. R.; Whitesides, G. M. “Crystals of crystals: fabrication of encapsulated and ordered two-dimensional arrays of microcrystals”, J. Am. Chem.Soc. 2002, 124, 3520–3521.
2.Zhao, D.; Yang, P.; Melosh, N.; Feng, J.; Chmelka, B. F.; Stucky, G. D. “Continuous mesoporous silica films with highly ordered large pore structures”, Adv. Mater. 1998, 10, 1380–1385.
3.Buse, K. ; Adibi, A.; Psaltis, D. “Non-volatile holographic storage in doubly doped lithium niobate crystals”, Nature 1998, 393, 665–668.
4.Odom, T. W.; Huang, J. L.; Kim, P.; Lieber, C. M. “Atomic structure and electronic properties of single-walled carbon nanotubes”, Nature 1998, 391, 62–64.
6.Arpin, K. A.; Mihi, A.; Johnson, H. T.; Baca, A. J.; Rogers, J. A.;Lewis, J. A.; Braun, P. V. “Multidimensional Architectures for Functional Optical Devices”, Adv. Mater. 2010, 22, 1084–1101.

被引用紀錄


林亭㚬(2017)。以掃描式電化學顯微鏡分析由接觸起電引起之表面電場〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2017.00906
陳至穎(2017)。以聚羥甲基3,4-二氧乙基噻吩摻混碳黑複合薄膜組裝固態光電致色變元件及其特性分析〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2017.00824

延伸閱讀