透過您的圖書館登入
IP:18.117.81.240
  • 學位論文

不同系列橋樑斷面之氣動力參數研究

Study of Aerodynamic Coefficients for Different Types of Bridge Deck Sections

指導教授 : 林堉溢

摘要


本論文的研究內容為不同系列斷面對長跨徑橋梁顫振與抖振行為之 探討,選用每一系列不同寬深比的斷面進行斷面模型風洞實驗,求得顫振 導數及風力係數。本研究選用四種主要的斷面形式,分別為矩形斷面、削 角斷面、箱型斷面與ㄇ型斷面。其中矩形斷面為主要實驗之項目,而削角 斷面、箱型斷面及ㄇ型斷面的資料則是使用他人研究結果,再以風力係數 以及顫振導數代入數值分析求取原橋的顫振臨界風速和抖振反應。 由本文研究之結果顯示,在大約相同寬深比下,就實驗值而言,削角 幾何形狀為穩定性最佳的斷面,其次為平板斷面,箱型斷面為第三,而最 不穩定的則是ㄇ型斷面。平滑流場下使用數值橋樑模型分析顫振臨界風速 結果則與實驗值相符合,而紊流場中,其不同系列斷面的穩定性也與實驗 值相符,隨著紊流強度的增加,其顫振現象也隨之延後。因此在相同寬深 比下,橋樑斷面幾何形狀的改變對於氣動力穩定亦為橋樑設計考量時的關 鍵。

並列摘要


This main objective of this thesis is to investigate and compare flutter wind speeds and buffeting responses of the prototype bridge with different types of deck sections. There are four series of bridge decks including rectangular sections, rectangular sections with triangular edge-fairings, box sections and plate girder sections. In each series several section models with different width-depth ratios are studied. Only the tests of the series of rectangular sections are conducted in this thesis. The other three types are adopted from other researchers’ work. The static wind force coefficients and the flutter derivatives are measured in the tests and then substituted into the numerical model to evaluate the flutter wind speed and buffeting response of the prototype bridge. The comparison of the flutter wind speeds obtained from the tests indicates that for a given width-depth ratio, the rectangular section with triangular edge-fairings is the best, rectangular section the second, box section the third, and plate girder section the worst. The flutter wind speed obtained from a numerical analysis based on flutter derivatives agrees well with that measured from the test. The results from the tests in turbulent flows indicate that the flutter wind speed increases with turbulence intensity. The results reveals that the modification of the bridge deck section significantly affect the aerodynamic stability of bridges.

參考文獻


1. Kubo, Y., Miyazaki, M. and Kato, K.,“Effects of end plates and blockage of structural members on drag forces”, Journal of Wind Engineerring and Industrial Aerodynamics, Vol 32, pp. 329-342 (1989)
4. Scanlan, R. H., “Interpreting Aeroelastic Models of Cable-Stayed Bridges, ” Journal of Engineering Mechanics, ASCE, Vol. 113(4), pp. 555-576 (1987).
5. Vickery, B. J., “Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulence stream,” Journal of Fluid Mesh.25, pp. 481-494 (1966).
6. Saito, T., Shiraishi, N. and Ishizaki, H., “On Aerodynamic stability of double-decked / trussed girder for cable-stayed “Higashi-Kobe Bridge” ,”Journal of Wind Engineering and Industrial Aerodynamics, Vol 33, pp. 323-332 (1990).
7. Santo, H. P., Branco, F. B., “Wind forces on bridges – numerical vs. experimental methods,” Journal of Wind Eng. and Industrial Aerodynamics, Vol 32, pp. 145-159 (1989).

被引用紀錄


陳怡儒(2013)。人行懸索支撐橋樑氣動力行為研究〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2013.00935
徐浩然(2007)。矩形斷面削角後對橋樑氣動力參數的影響〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2007.00336

延伸閱讀