很多重要的不等式都建立在凸函數上,但是其中最著名的不等式之一為Hermite-Hadamard`s不等式 (or Hadamard`s 不等式)。 這一篇論文主要的目的在於作一些第二類S-凸函數的Hadamard 型不等式的研究,我們利用不等式來找出積分式的最佳上界,並且從這些新導出的結論中,亦可推回以前已經有人証過的定理,這令我們更加的確定,我們所推出的新結論是正確的且可供參考的。
Many important inequalities are established for the class of convex functions, but one of the most famous is so called Hermite-Hadamard`s inequality (or Hadamard`s inequality). The main purpose of this paper is to establish new inequalities like those given in Theorem B、C、D and E. We make use of inequalities to figure out the best upper bound . The conclusion in the paper, which proves the result to be more convicting and useful, can also be inferred to previous results.