透過您的圖書館登入
IP:18.221.98.71
  • 學位論文

都市垃圾焚化底渣與污水污泥焚化灰共同燒結再利用

The Study on the Recovery of the Bottom Ash from the Incineration of MSW and Sewage Sludge by Co-sintering Process

指導教授 : 高思懷

摘要


人口的增長與城市的建設、開發帶來了相當量的污水,而在污水處理的同時也產生了副產物-污水污泥,若未妥善處理,將產生惡臭氣體、致病菌和重金屬污染等環境問題。因應近年來廢棄物「減量化」、「資源化」、「無害化」與「安定化」的目標,污泥焚化處理為污泥處理最適當的選擇。但污水污泥因含水率較高、低位發熱量(Lower Heating Value,LHV)較低,若僅焚化污泥將提升其處理成本。國內外學者研究指出污水污泥與具有較高LHV的都市垃圾共同焚化具有其可行性。許多文獻中指出,焚化後之污泥灰具有資源化之可行性,而本實驗室歷年研究結果也發現,利用底渣燒結再利用之可行性極高,可作為再生建材使用。 本研究以底渣與污泥焚化灰各自摻配,模擬垃圾與污泥共同焚化後之混合灰再利用。以不同之摻配比輔以廢玻璃進行燒結,廢玻璃容易於燒結過程中產生液相,使燒結體機械強度大幅增加,而後以CNS3299-4 陶瓷面磚試驗方法之抗灣試驗規範和日本 JIS A1470-1:2008建築材料之吸放濕性試驗法-第1部:濕度應答法找出較具有調濕性之配比。參考民國101年環保署公告之「垃圾焚化廠焚化底渣再利用標準」作為研究規範,針對燒結體進行毒性特性溶出程序試驗(TCLP),探討重金屬溶出狀況,以確認燒結體之安全性。 研究結果發現,以污泥灰添加50 %,底渣、玻璃粉各25 %(GC)於900 ℃燒結後之試體最具有調濕能力,其12小時吸濕量約為50.6 g/cm2,但由於其後12小時之脫附量未達吸濕量之70 %,因此仍不符合吸放濕等級規範;但抗彎強度高於陶瓷面磚之標準6.1 MPa,達到6.91 MPa。若不以調濕性能為優先,則以1000 ℃燒結之試體GC和污泥灰添加30 %,底渣、玻璃粉各35 %(GB)之900、1000 ℃燒結體均達到陶瓷面磚之標準,其抗彎強度分別為1000 ℃之GC 8.71MPa、900 ℃之GB 11.63MPa、1000 ℃之GB 14.12 MPa,均高於面磚標準之6.1 MPa;而重金屬Pb、Zn、Cu均穩定於燒結體中,其固相殘留率為84.78 %、91.33 %、98.75%;且TCLP檢測值遠低於再利用標準,因此可確定經燒結後,其重金屬已穩定於燒結體內,達無害化之目標,可進行再利用。

關鍵字

污水污泥 底渣 燒結 調濕材料 陶瓷面磚

並列摘要


Incineration is the appropriate choice for sewage sludge treatment in recent years, due to high moisture content and low Heating Value, incineration of sludge alone will increase its costs. Co-incineration of sewage sludge with municipal solid waste (MSW) is feasible in the future. Many studies have pointed out the sludge incineration ash has the possibility to be sintered as recovered ceramic, and the recovery of MSWI bottom ash as the functional ceramic feedstock after proper pretreatment have been proven in our laboratory during the past years. In this study, the bottom ash and sludge ash were mixed to simulate the scenario of the recovery of the ash of co-incineration of MSW with sewage sludge, and the addition of waste glass during sintering were help to decrease the temperature and increase the strength. The CNS3299-4 ceramic tile bending test method, JIS A1470 -1: 2008 Method for the humidity-controlling test of building materials - Part 1: Moisture response method, TCLP analysis and the standard of recovery of MSWI ashes of Taiwan EPA were analyzed to exam the characteristic of the sintered products. The results showed that, the sample of 50% sludge ash combined with 25% washed MSWI bottom ash and glass powder had the best humidity control capacity at 900 ℃ sintering temperature, the moisture absorption was 50.6 g/cm2, but its desorption capacity could not meet the standard (70 %); nevertheless, the bending strength reached 6.91 MPa, which satisfied the ceramic tile standard (6.1 MPa). If the humidity-control ability is neglected, the combination of sludge ash 30%, MSWI bottom ash and glass powder 35% sintered at 1,000 ℃ present the highest bending strength (14.12 MPa). The evaporation of heavy metals at 900 ℃ sintering were 15-20 % for lead, the others all below 10%; the TCLP of the products were all far below the standard of the MSWI ashes recovery standard in Taiwan.

參考文獻


楊秉蒼,「營建料源不穩,品質堪慮」,行政院衛生署國民健康局政風室,2008
吳靜薇,「水庫淤泥添加改善都市垃圾焚化灰渣燒製輕質骨材之研究」,碩士學位論文,淡江大學水資源及環境工程研究所,2007
陳雨詩,「粗粒徑垃圾焚化底渣燒製高強度輕質骨材之研究」,碩士學位論文,淡江大學水資源及環境工程研究所,2006
黃郁凱,「以坡縷石吸附重金屬搭配濕式研磨改善垃圾焚化飛灰穩定之研究」,碩士學位論文,淡江大學水資源及環境工程研究所,2015
黃啟賓,「焚化鍋爐灰摻配坡縷石與廢玻璃燒製高性能調濕陶瓷綠建材之研究」,碩士學位論文,淡江大學水資源及環境工程研究所,2015

延伸閱讀