透過您的圖書館登入
IP:3.149.252.238
  • 學位論文

數位控制器設計與區間控制時間之分析

Digital Controller Design with the Analysis of Interval Control Time

指導教授 : 翁慶昌

摘要


本論文提出一區間控制時間概念,透過此概念來實現高效能之控制器設計。數位控制器已成為現今無論在學術或是工業領域中十分常見的一個控制方法,加上半導體技術的進步,使得控制器得以運作在相較於過去更高的效能以及處速度,惟如何決定控制器本身的控制時間成為一個鮮少人討論的議題,以往設計者會以經驗法則來設計控制器的參數,而調整控制器參數則是使用嘗試錯誤(try and error)法來進行測試且需要花費大量的時間。因此本論文透過分析受控體的步階響應,來得到受控體性能參數,進而分析出受控體的最佳發送命令時間。在此命令區間下,控制器對受控體進行控制才能得到系統的最佳增益值。在實驗模擬中,本論文透過凡舉下列常見的數位控制方式如P以及PID控制器等,做為控制時間之模擬範例,並加以不同的控制器命令區間實驗,比較所產生的控制效果之優劣,再透過對應不同之受控體響應區間做為區間控制時間輸入參數,透過MatLab模擬並分析相應之控制曲線,用以驗證本論文所提出之透過控制時間實現控制最佳化目標。

並列摘要


This corresponding thesis proposed interval control time, a concept to improve performance index while implementing system designs of digital controller. By former practices, the users or designers of digital controller need to adjust parameters of control time by manual experience or instructions. During the design of digital control system, users usually have no choice but use the primitive method, so called “try and error” to adjust and acquire the optimal values for their systems. It will always require massive times for users to test and retry their system. Since there are no efficient and systematic ways to find the required values for control times, this paper introduced a method analyzing step responses of target plant and acquiring its performance index to find the optimal timing of control time. The system can operate to receive the most suitable amplitudes while plants be controlled under this time interval. According to the simulation of this paper, several different control times are used to analyze which the performance shows in different time intervals sampled on the transient response and help us sorting the superiority between these sampling intervals. Proving and achieving the goal of the optimization of control by these different samples corresponding to our controller and plants in the whole control system.

參考文獻


[1] J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” Transactions of the American Society of Mechanical Engineers (ASME), vol. 64, pp. 759–768, 1942.
[2] J. Zhang and L. Guo, ‘‘Theory and design of PID controller for nonlinear uncertain systems,’’ IEEE Control Systems Letters, vol. 3, no. 3, pp. 643–648, 2019.
[3] T. Samad, ‘‘A survey on industry impact and challenges thereof [technical activities],’’ IEEE Control Systems Magazine, vol. 37, no. 1, pp. 17–18, 2017.
[4] M. A. Taut, G. Chindris, and D. Pitica, ‘‘PID algorithm used for DC motor control,’’ Proc. IEEE 24th International Symposium for Design and Technology of Electronics Packages (SIITME), pp. 365–372, 2018.
[5] A. Rai, D. K. Das, and M. M. Lotha, “LabVIEW platform based realtime speed control of a DC servo motor with fuzzy-PI controller,” Proc. International Conference on Electrical, Electronic and Computer Engineering (ICEEC), pp. 1–4, Nov. 2019.

延伸閱讀