透過您的圖書館登入
IP:18.188.241.82
  • 學位論文

參數化織理性木構造-機械手臂製造之應用

Parametric Timber Textile Structure-The Applications of Robotic Fabrication

指導教授 : 陳珍誠
共同指導教授 : 游瑛樟(Ying-Chang Yu)

摘要


在工業革命之後,機器取代勞力、電力取代蒸氣、電腦科技加入機器、到智慧工廠概念的導入,機器時代的來臨讓整個世界朝向更有效率的生產與製造發展。科技的發展也讓電腦與數位科技開始介入設計,電腦輔助設計(CAD)結合電腦輔助製造(CAM)的應用成為主流,參數化模型(Parametric Modelling)的發展,也拓展了建築設計的可能性。木材加工技術從傳統手工進展到電動機具,再推進到電腦數值控制加工機(CNC)以及近年所發展的機械手臂製造(Robotic Fabrication)等技術發展,同時推動了加工技術的邁進。 全球暖化後的地球環境產生劇烈變化,環境永續的概念逐漸受到重視。今日建築材料中鋼鐵與混凝土的製程需要耗費大量能源且碳足跡極大,而可持續管理森林的林木碳足跡較少且製造的碳排放較低,因此以木材作為生態綠建材的概念已經被重新重視。傳統的木構造與嶄新的加工技術激盪出新火花,電腦輔助數位設計也讓過去無法完成的自由形體與複雜造型能夠被製造。本研究著重於參數化模型、細部節點與構造、機器人製造加工與組裝方式的流程設計,對於設計到製造組裝之間的流程反覆檢討並且加以優化。 本研究主要研究內容包括木構造與數位製造知識的建立、材料及構造系統的設計與試驗、以及機器手臂的製造流程設計,研究內容如下: 一、透過文獻回顧建立傳統到現代木構造、細部節點與織理性、機械手臂製造的相關知識,並整理分析材料及系統的種類後,選擇適合後續研究的方向。 二、透過小、中、大尺度的木構設計探討織理性木構造的可能性。小尺度的模型以傳統卡榫的幾何關係及組裝方式為基礎,運用參數化軟體Grasshopper繪製不同的卡接方式,包含傳統卡榫的轉譯、互承結構的變形等;中尺度的模型,設計不同系統的木構造,探討單元與系統之間的關係、組裝方式與順序的變化;大尺度的模型,結合前面研究中卡榫與系統的優點,設計出一個複層互承的木構造。 三、在小、中、大尺度的木構造實驗過程中,將三維的節點轉成銑削刀線,再以離線編程的插件程式Robots編寫機械手臂移動的路徑,運用機械手臂結合銑削系統完成木構造桿件製造,並且實地組裝1:1之木構造。由電腦模擬到材料加工組裝,透過製造經驗反覆檢討並優化細節與流程,最後建立一套由參數化設計建模至機械手臂加工製造的流程。 傳統木構造受到硬體面的工具、軟體面的二維圖面限制,在複雜的構造設計中需要仰賴相當精良的木工技術。本研究運用參數化軟體Grasshopper設計各種新形態的數位木構造,在力學、材料使用、卡接形式、組裝方式等方面突破過去傳統木構造所無法達到的極限,並將構造中複雜的三維節點透過機器人離線編程及機械手臂製造完成木構造桿件的製造。在探究數位木構造的過程中,從理論轉化成實務、傳統轉譯到現代、節點發展到形態,研究的每個細節都在持續討論構築的現代性。期待本研究的完成能夠提供後續研究者參考,並在機械手臂製造與數位木構築上提供更多的啟發。

並列摘要


Ever since the first industrial revolution, machines began to replace manpower. From electricity replacing steam power, computers introduced into manufacturing, till the idea of intelligent factories, the arrival of the automation era has brought the world a boost in productivity. This also reflects on bringing digital technology into designing. Alongside with Computer-aided design (CAD) and Computer-aided Manufacturing (CAM) becoming the mainstream, the development of parametric modeling also widens the possibilities of architecture. The evolution of timber processing techniques, from hand craft to machinery to computer numerical control (CNC) and robotic fabrication, simultaneously pushes processing technology further beyond. Global warming has resulted in enormous climate change, and the idea of sustainability has never been valued more. Building materials today like iron, steel, and concrete consumes a tremendous amount of energy and has enormous carbon footprints. On the other hand, timber supplies from sustainable forest management (SFM) produces lower carbon footprints, thus gaining more and more attention as a green material. By combining traditional timber structures and cutting-edge processing techniques, we can sculpt arbitrary complicated shapes that we were never able to sculpt before. This work focuses on the optimization of parametric modeling, detailed joint and structures, robotic fabrication, and the workflow design of assembling methods. The main contributions of our work include establishing the knowledge for timber structure and digital manufacturing, design and experiments on material and structure systems, and the manufacture workflow for robotic arms. In specific notes, 1.We did publication reviews on traditional to modern timber structures, detailed joint and textiles, and robotic fabrication. The information is then systematically organized into analysis materials for choosing the appropriate method for later research. 2.Utilizing small, medium and large sizes of timber structure designs to probe the possibilities of textile timber structures. Small sized models are built up from geometrical relationships and assembly methods of traditional joints, then drew different joining methods using the parameterization software Grasshopper. This includes translation of traditional joints and metamorphization of reciprocal structures. For medium sized models, we designed different systems of timber structures, and investigated in relationships between units and systems, and the variations of assembly methods and orders. On large sized models, we combined different strengths of the joint and systems of the stated researches, and designed a multiple layered reciprocal timber structure. 3.From our small, medium, and large sized experiments, we transformed our three-dimensional joints into milling paths, adding trails for robotic arms programmed by offline programming plugin Robots, and finally finishing the timber structure manufacturing and assembling the life-sized timber structure on site by combining robotic arms and milling systems. From computer simulated to actual assembly, we established a workflow for parametric design modeling to robotic arm processing after repeatedly optimization. Traditional timber structures are limited by the tools from the hardware perspective and the two-dimensioned layouts from the software perspective, which requires a high skill level for complicated structural designs. This work utilizes parameterize software Grasshopper to sketch various novel digital timber structures, and reached a breakthrough in mechanics, material utilization, joint methods, and assembly methods. The timber structured manufacturing is performed through the utilization of offline programmed robots and robotic fabrication from complicated three-dimensional joints. In the progress of investigating in digital timber structures, in the progress of turning theory into implementation, from traditional to modern, from nodes to structures, every detail continue to discuss about modern tectonics. We hope that this research can stand at the stepping stone for future researches, and inspire more to investigate in robotic fabrication and digital timber structures.

參考文獻


中文書籍
Kenneth Frampton(1995)。《建構文化研究》。王駿陽(2007)。北京。中國建築工業出版社。
Gottfried Semper(1851)。《建築四要素》。羅德胤、趙雯雯、包志禹(2010)。中國。中國建築工業出版社。
柏庭衛(2012)。《杠作》。中國。中國建築工業出版社。
劉育東、林楚卿(2009)。《新構築: 邁向數位建築的新理論》。台灣。田園城市文化事業有限公司。

延伸閱讀