透過您的圖書館登入
IP:52.15.63.145
  • 學位論文

有效受風面積對於獨立式單斜屋蓋結構風壓係數之探討

Investigation of area effects on wind loads of an isolated monoslope roof structure

指導教授 : 羅元隆

摘要


替代性能源的問題促使我國產業鏈與政府配合積極發展綠色能源,期望能降低既有產生能源的方式。同時也呼應國際節能減碳的風潮,積極推動我國各種的綠能產業發展。太陽能即是一種取之不盡、用之不竭的綠色能源。然而目前太陽能光電系統大多設置於空曠區域以及建築物頂端,在系統本身重量遠較建築物為輕的狀況下,造成光電系統受強風作用,因此有必要針對受風產生之荷重加以評估。 由於我國建築物耐風設計規範及解說中,針對局部設計風載重有考量有效面積的效應,容易導致風洞實驗結果或者實場監測結果的局部極大或極小風壓值超過規範參考值。此一現象早已於美國ASCE7-02規範中改善並沿用至今。為了有效提高我國規範之參考價值,本研究針對開放型結構物的獨立單斜屋蓋結構進行各風向角下,屋蓋上、下表面風壓分布的瞬時量測。其中屋蓋模型表面分為八個不同區域採以較為密布的風壓孔排列,以便進行有效面積的加權計算。接著探討不同局部對有效面積效應的敏感程度之探討。結果顯示,有效面積越大設計風壓係數越小,有效面積的影響因區域不同而有大小程度不同。此外,由於風洞試驗有其物理上的限制,導致屋蓋模型下表面風壓量測失真,本研究提出簡化方式以便進行淨風壓係數的計算,並與我國規範中同種類型屋蓋結構物進行比較。最後,則參考美國ASCE最新規範中有效面積折減方式與本研究提出之迴歸公式進行比較,提出未來可能用於修訂現有規範的參考成果。 利用風洞實驗的壓力量測實驗,研究地面型太陽能光電板,建置符合實場之縮尺模型,得到地面型太陽能光電系統氣動力模型之表面風壓。透過長時間的風壓數據採樣,在足夠的樣本數之下進行風壓係數分析、極值分析與有效面積加權的計算,探討隨不同面積加權下的變化及影響,可得到各風壓孔之間的相關性。

並列摘要


Renewable energy is one of the most important topics in the modern world. In Taiwan, industrial associations or companies have been working with Taiwanese government to develop various kinds of green energy resources under specific policies or technology supports. One of the common green energy resources in Taiwan is the solar panel system. The solar panel system is usually mounted on the rooftop of the low-rise buildings or freely standing on the open terrain. Since the system itself is relatively light in weight compared to the buildings, its safety design is considered to be dominated by wind loading instead of earthquake loading. This study intends to initiate the investigation of design wind loads on the commonly seen solar panel systems. This study adopted wind tunnel test for pressure measurement on different models. From experimental results, mean wind pressure coefficient distribution on solar panel system is examined through parametrical analysis. Three inclinations of solar panel system, two height aspect ratios of buildings and three different spaces between panel arrays are assumed to the target parameters. From experimental results, the windward solar panel row is loaded by strong negative pressures. The pressures show significant gradient distribution around the corners when the wind attack angle is rotated; in some cases, reattachment occurs to generate positive pressures.

參考文獻


[1] Cook, N. J.,Mayne, J.R. (1980) “A Refined Working Approach to the Assessment of Wind Loads for Equivalent Static Design”,Journal of Wind Engineering and Industrial Aerodynamic, Vo1.6(1-2), pp.125-137.
[2] Armitt, J. & Counihan, J(1968) “The Simulation of the Atmospheric Boundary Layer”, Vo1.2, pp.49-71.
[3] Counihan, J. (1970) “An Improved Method of simulation Atmospheric Boundary Layer”, Atmospheric Environment, Vo1.4, pp.159-275.
[4] Counihan, J. (1970) “Further Measurement in a Simulated Atmospheric Boundary Layer”, Atmospheric Environment, Vo1.4, pp.159-275.
[5] Counihan, J. (1973) “Simulation of an Adiabatic Urban Boundary Layer in a Wind Tunnel”, Atmospheric Environment, Vo1.7, pp.673-689.

延伸閱讀