透過您的圖書館登入
IP:3.138.141.202
  • 學位論文

多孔均溫板升降溫循環之模擬分析

Simulation of Heating and Cooling Cycle in Multi-Well Heat Spreader

指導教授 : 康尚文

摘要


在生物科技上進行基因複製時,有一反應方法稱聚合酶連鎖反應,其複製溫床為一多孔均溫板,本文利用CFD數值模擬軟體在自然對流條件下,針對不同材質的多孔均溫板從常溫25℃升溫至95℃,接著降至55℃再升溫至72℃完成單一循環,從中進行均溫性及升、降溫速率之分析。 均溫板層結構分為上板及下板,上板厚度13.2mm包含173個直徑5mm、深度10mm的孔洞,下板為一矩形厚度為4mm,並在下方均溫分佈六片致冷晶片作為熱源,給予3.5A的電流。並利用七個觀測點來探討多孔均溫板之平面、三維均溫性及升降溫速率;而多孔均溫板材質選用銀質、銅質、鋁質以及蒸汽腔體來進行模擬分析,其蒸氣腔體內機制複雜,在模擬中以巨觀形式給定相關參數。 結果顯示,蒸汽腔體多孔均溫板能在最短時間裡完成循環,為四種材質裡最快。因蒸汽腔體有較大的熱擴散係數,所以溫差較小,其次為銀質多孔均溫板、銅質多孔均溫板,最後則是鋁質多孔均溫板。而在各階段的升降溫速率當中,主要以加熱至95℃為比較,蒸汽腔體比其他材質都能較快達到。而多孔均溫板從高溫降至低溫時,材料需要將熱量傳到空氣中,使得降溫的速率都不及升溫的快。 總結來說,多孔均溫板採用蒸汽腔體能使整個循環過程更快速地達到均溫,以符合效率及期待。

並列摘要


In this study, Polymerase Chain Reaction (PCR) heating and cooling cycle of multi-well vapor chamber (VC) heat spreader are simulated and analyzed by CFD software at natural convection condition. PCR cycle consists denaturing at 95 °C, annealing at 55 °C and extension at 72 °C. Thermoelectric coolers (TEC) are used as heating and cooling elements. Applying six TEC units on heat spreader, temperature uniformity, heating and cooling rate are studied. Model size of the heat spreader is 112×75×17.2mm, and its structure is consisted of upper plate and lower plate. The upper plate is 13.2mm thick, and has 173 holes with a diameter of 5mm and a depth of 10mm for each. The lower plate is rectangular with a thickness of 4mm. The heat spreaders are made of four main materials: silver, copper, aluminum and vapor chamber. Temperature uniformity is assessed by comparing maximum temperature differences of heat spreaders. The simulation results showed that the vapor chamber has better temperature uniformity than other materials because it has higher heat capacity, faster heating rate and higher coefficient of heat conduction. An asymmetric single source heating mode is also developed in the paper.

參考文獻


[9] 洪裕勛,「鋁質蒸汽腔體均熱片之製造與分析」,淡江大學,機械與機電工程學系博士學位論文,2009。
[11] 許峻翔,「多孔蒸汽腔體均溫板之均溫性模擬分析」,淡江大學,機械與機電工程學系碩士學位論文,2011。
[14] 林駿穎,「蒸汽腔體均溫性之數值模擬」,淡江大學,機械與機電工程學系碩士學位論文,2012。
[2] K. B. Mullis, et. al “Enzymatic Amplification of s- Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia” SCIENCE, Vol. 230, pp. 1350 -1354, 1985.
[3] J. Huang, et. al “FEA for Steady-State Thermal Performance of PCR Thermal-Cycler Based on Thermoelectric Cooler”, 4th International Conference on Biomedical Engineering and Informatics (BMEI), pp. 1097-1100, 2011.

延伸閱讀