透過您的圖書館登入
IP:18.222.3.255
  • 學位論文

溫室氣體與過渡金屬離子之含四氮缺陷石墨烯系統的理論計算

Theoretical calculations of greenhouse gaseous molecules adsorbed on transition metal ion/Four-nitrogen defective nano-sheet graphene

指導教授 : 王伯昌

摘要


本篇使用了密度泛函理論搭配不同的基底函數與計算軟體分別模擬計算了溫室氣體與含過渡金屬缺陷石墨烯系統,此系統針對常見溫室氣體搭配不同的過渡金屬(Fe2+、Co2+、Ni2+、Cu2+、Zn2+)做不同位向的氣體吸附,可做為後續氣體偵測器之研究參考。 含過渡金屬(Fe2+、Co2+、Ni2+、Cu2+、Zn2+)缺陷石墨烯系統對常見氣體與溫室氣體(CO2、N2O、CH4)做不同位向的氣體吸附。實驗結果發現此系統均吸附三原子氣體中吸附CO2、N2O以過渡金屬Fe2+的吸附為最佳,而多原子氣體中CH4是無吸附的現象。此外藉由電子性質的改變可以做為未來使用偵測氣體的依據,外接一電子裝置偵測其被吸附後的氣體Eg值改變量,作為判斷氣體有無吸附也是一個未來可行的方法。

並列摘要


Abstract: Density functional theory was used to simulate the calculation of greenhouse gas (CO2、N2O、CH4) and transition metal (Fe2+、Co2+、Ni2+、Cu2+、Zn2+) containing defect graphene systems with different basis functions and computational software. This system is used for different greenhouse gases with different transition metals for different orientations. As a reference for the research of subsequent gas detectors. We use 4N-HDG-Fe defect graphene system to adsorb common gases and greenhouse gases, using SIESTA 4.0 under GGA conditions with density functional theory and basis function PBE/DZP for optimal structuring, followed by Gaussian 09 With B3LYP/LANL2DZ for single point energy calculation, the different adsorption orientations of various gases were simulated, and the optimal orientation after adsorption was selected. From the experimental results, it can be found that when the system is three-atom gas, the only adsorption phenomenon is when the central transition metal is Fe2+ in the vertical direction (⫠N1-N2-O) and (⫠O-N2-N1). Among them, the vertical orientation (⫠N1-N2-O) has the best adsorption energy. In a polyatomic gas, it is presumed that it is surrounded by H atoms, making it difficult for Fe2+ to react with C atoms. When adsorbed on CH4, there is no adsorption phenomenon, and in contrast, adsorption of CH2CH2 will be a better choice.

並列關鍵字

DFT graphene transition metals greengas

參考文獻


1. Diana, S. M. J. Chem. Educ. 2005, 82, 665.
2. Teri, W. O.; Pileni, M.-P. Acc. Chem. Res. 2008, 41, 1565.
3. 大澤映二,〈化學(日)〉,1970, 25, 854.
4. Thrower, P. A. Phys. Rev. Lett. 1999, 370, 1677.
5. Rohlfing,E. A.; Cox, . M.; Kaldor, A. Chem. Phys. 1984, 81, 3322.

延伸閱讀