透過您的圖書館登入
IP:3.144.18.4
  • 學位論文

新型態形狀穩定之聚氧化乙烯相轉移材料之研究

studies on Poly(Ethylene Oxide)-based as shape stabilized phase change material

指導教授 : 賴偉淇

摘要


本研究計畫以聚氧化乙烯(poly(ethylene glycol),PEO)高分子相轉移材料為主體,與二氧化矽(silica)兩者摻混,並以去離子水(H2O)為溶劑,利用溶劑揮發來製備新型形狀穩定之相轉移材料(PCM)。silica為支撐材,希望可以透過silica的加入增加其結構穩定性,改變原本 PEO 儲存潛熱後無法保持形狀穩定之性質,並提供聚在其熔點上的吸附性,藉由 silica 之性質防止 PEO 外洩,透過改變 PEO 之分子量與 silica 添加量來測試PEO/silica 相轉移複合材料的成膜性,其中形狀最佳比例之系統再添加生物炭(biochar)以增加形狀穩定之相轉移材料的光熱效應。藉由形狀穩定的特性期盼改善相轉移材料封裝不易性質,最後對其光熱性質進行分析。 本研究分兩部分,第一部份研究不同添加量的 silica 對 PCM 之影響。由傅立葉轉換紅外光譜 (FTIR)分析結果得知 silica 不會產生新的峰值產生;利用穿透式電子顯微鏡(TEM)確認 silica 分布均勻;也運用掃描式電子顯微鏡(SEM)觀察 PCM表面之結構,並且透過 EDS 確認 PCM 各元素比例與配置相符。透過萬用拉力機可觀測 silica 可以有效提升 PCM 之抗拉程度以及斷裂伸長量, PCM 之熱性質利用熱重損失分析儀(TGA)來確認製備的過程中溶劑(H2O)在100℃時已完全揮發完全,並觀測 PCM 裂解溫度,可觀察添加 silica 會幫助材料的熱穩定性。由 DSC 得知 silica 的添加會降低本研究計畫以聚氧化乙烯(poly(ethylene glycol),PEO)高分子相轉移材料為主體,與二氧化矽(silica)兩者摻混,並以去離子水(H2O)為溶劑,利用溶劑揮發來製備新型形狀穩定之相轉移材料(PCM)。silica為支撐材,希望可以透過silica的加入增加其結構穩定性,改變原本 PEO 儲存潛熱後無法保持形狀穩定之性質,並提供聚在其熔點上的吸附性,藉由 silica 之性質防止 PEO 外洩,透過改變 PEO 之分子量與 silica 添加量來測試PEO/silica 相轉移複合材料的成膜性,其中形狀最佳比例之系統再添加生物炭(biochar)以增加形狀穩定之相轉移材料的光熱效應。藉由形狀穩定的特性期盼改善相轉移材料封裝不易性質,最後對其光熱性質進行分析。 本研究分兩部分,第一部份研究不同添加量的 silica 對 PCM 之影響。由傅立葉轉換紅外光譜 (FTIR)分析結果得知 silica 不會產生新的峰值產生;利用穿透式電子顯微鏡(TEM)確認 silica 分布均勻;也運用掃描式電子顯微鏡(SEM)觀察 PCM表面之結構,並且透過 EDS 確認 PCM 各元素比例與配置相符。透過萬用拉力機可觀測 silica 可以有效提升 PCM 之抗拉程度以及斷裂伸長量, PCM 之熱性質利用熱重損失分析儀(TGA)來確認製備的過程中溶劑(H2O)在100℃時已完全揮發完全,並觀測 PCM 裂解溫度,可觀察添加 silica 會幫助材料的熱穩定性。由 DSC 得知 silica 的添加會降低本研究計畫以聚氧化乙烯(poly(ethylene glycol),PEO)高分子相轉移材料為主體,與二氧化矽(silica)兩者摻混,並以去離子水(H2O)為溶劑,利用溶劑揮發來製備新型形狀穩定之相轉移材料(PCM)。silica為支撐材,希望可以透過silica的加入增加其結構穩定性,改變原本 PEO 儲存潛熱後無法保持形狀穩定之性質,並提供聚在其熔點上的吸附性,藉由 silica 之性質防止 PEO 外洩,透過改變 PEO 之分子量與 silica 添加量來測試PEO/silica 相轉移複合材料的成膜性,其中形狀最佳比例之系統再添加生物炭(biochar)以增加形狀穩定之相轉移材料的光熱效應。藉由形狀穩定的特性期盼改善相轉移材料封裝不易性質,最後對其光熱性質進行分析。 本研究分兩部分,第一部份研究不同添加量的 silica 對 PCM 之影響。由傅立葉轉換紅外光譜 (FTIR)分析結果得知 silica 不會產生新的峰值產生;利用穿透式電子顯微鏡(TEM)確認 silica 分布均勻;也運用掃描式電子顯微鏡(SEM)觀察 PCM表面之結構,並且透過 EDS 確認 PCM 各元素比例與配置相符。透過萬用拉力機可觀測 silica 可以有效提升 PCM 之抗拉程度以及斷裂伸長量, PCM 之熱性質利用熱重損失分析儀(TGA)來確認製備的過程中溶劑(H2O)在100℃時已完全揮發完全,並觀測 PCM 裂解溫度,可觀察添加 silica 會幫助材料的熱穩定性。由 DSC 得知 silica 的添加會降低本研究計畫以聚氧化乙烯(poly(ethylene glycol),PEO)高分子相轉移材料為主體,與二氧化矽(silica)兩者摻混,並以去離子水(H2O)為溶劑,利用溶劑揮發來製備新型形狀穩定之相轉移材料(PCM)。silica為支撐材,希望可以透過silica的加入增加其結構穩定性,改變原本 PEO 儲存潛熱後無法保持形狀穩定之性質,並提供聚在其熔點上的吸附性,藉由 silica 之性質防止 PEO 外洩,透過改變 PEO 之分子量與 silica 添加量來測試PEO/silica 相轉移複合材料的成膜性,其中形狀最佳比例之系統再添加生物炭(biochar)以增加形狀穩定之相轉移材料的光熱效應。藉由形狀穩定的特性期盼改善相轉移材料封裝不易性質,最後對其光熱性質進行分析。 本研究分兩部分,第一部份研究不同添加量的 silica 對 PCM 之影響。由傅立葉轉換紅外光譜 (FTIR)分析結果得知 silica 不會產生新的峰值產生;利用穿透式電子顯微鏡(TEM)確認 silica 分布均勻;也運用掃描式電子顯微鏡(SEM)觀察 PCM表面之結構,並且透過 EDS 確認 PCM 各元素比例與配置相符。透過萬用拉力機可觀測 silica 可以有效提升 PCM 之抗拉程度以及斷裂伸長量, PCM 之熱性質利用熱重損失分析儀(TGA)來確認製備的過程中溶劑(H2O)在100℃時已完全揮發完全,並觀測 PCM 裂解溫度,可觀察添加 silica 會幫助材料的熱穩定性。由 DSC 得知 silica 的添加會降低PCM 的熔化熱,因而使其儲熱性質降低,但仍保有116.46 J/g。利用洩漏率的方式來觀測 PCM 會隨 silica 的添加,而減少 PCM 之洩漏;接著利用熱導儀可以發現PCM 熱傳導率提升約1.5倍,最後透過熱循環分析來確認 PCM在熱循環後,其儲熱性質之影響都不大。 本研究第二部份研究不同添加量的生物炭(biochar)對PEO/silica PCM 之影響。由傅立葉轉換紅外光譜(FTIR)分析結果得知添加 biochar 不會使 PCM 形成新的峰值;運用掃描式電子顯微鏡(SEM)觀察 PCM 表面之緻密性。透過萬用拉力機可觀測 biochar 之添加可以有效提升 PCM 之抗拉程度; PCM 之熱性質利用熱重損失分析儀(TGA)來確認裂解溫度,可觀察添加 biochar 會幫助材料的熱穩定性。由 DSC 得知 biochar的添加會降低 PEO的熱焓值,影響 PCM 性質。接著利用熱導儀可以發現因 biochar 低導熱性而使PCM熱傳導率略為下降,透過熱循環分析來確認 PCM在熱循環後,其儲熱性質之影響都不大。光熱效應中實驗證實biochar之添加對於光之吸收性呈正相關,有無添加 biochar 對於樣品之光吸收度有明顯之差距,最佳效率達74.5%,實驗結果為後續實驗訂下一個良好基礎。

並列摘要


In this study, poly (ethylene glycol), (PEO) as the main polymer, blends with silica, and uses deionized water (H2O) as solvent, to prepare a new shape-stable phase change material (PCM). Silica is the support material, PEO/silica PCM hopes to increase its structural stability through the addition of silica, change the original property of PEO that cannot maintain shape stability after storing latent heat, and provide adsorption at its melting point. By virtue of the properties of silica to prevent the leakage of PEO. Test the film-forming properties of PEO/silica phase transfer composites by changing the molecular weight of PEO and the amount of silica added. Among them, the system with the best ratio of shape is added with biochar to increase the phase transfer material with stable shape photothermal effect. It is hoped to improve the difficult properties of phase transfer materials for encapsulation by virtue of its stable shape, and finally analyze its photothermal properties The first part of this study investigated the effect of different additions of silica on PCM. From the results of Fourier Transform Infrared Spectroscopy (FTIR) analysis, it is known that silica does not have new peaks in PCM; the transmission electron microscope (TEM) is used to confirm that the silica is evenly distributed; the scanning electron microscope (SEM) is also used to observe the PCM surface. Confirmed by EDS that the ratio of each element of PCM is consistent with the configuration. The tensile strength and elongation at break of PCM can be effectively improved by observing the silica through a universal tensile machine. The thermal properties of PCM are confirmed by using a thermogravimetric loss analyzer (TGA) to confirm that the solvent (H2O) in the preparation process is completely complete volatilization, and observe the cracking temperature of PCM, it can be observed that adding silica will help the thermal stability of the material. It is known from DSC that the addition of silica will reduce the heat of fusion of PCM, thus reducing its heat storage properties, but still retaining 116.46 J/g. Using the leakage rate method to observe that PCM will reduce the leakage of PCM with the addition of silica; then using a thermal conductivity meter, it can be found that the thermal conductivity of PCM has increased by about 1.5 times, and finally through thermal cycle analysis to confirm that the storage capacity of PCM after thermal cycle,the thermal properties have little effect. The second part of the study studies the effect of different additions of biochar on PEO/silica PCM. According to the analysis results of Fourier Transform Infrared Spectroscopy (FTIR), adding biochar will not make PCM form a new peak; use a scanning electron microscope (SEM) to observe the compactness of the PCM surface. It can be observed that the addition of biochar can effectively improve the tensile strength of PCM through the universal tensile tester; the thermal properties of PCM can be confirmed by thermogravimetric analysis (TGA) to confirm the cracking temperature, and it can be observed that the addition of biochar can help the thermal stability of the material. It is known from DSC that the addition of biochar will reduce the enthalpy of PEO and affect the properties of PCM. Using a thermal conductivity meter can found that the thermal conductivity of PCM is slightly reduced due to the low thermal conductivity of biochar. Through thermal cycle analysis, it is confirmed that the thermal storage properties of PCM have little effect after thermal cycle. Experiments in the photothermal effect have confirmed that the addition of biochar is positively correlated with the light absorption. There is a significant difference between the addition of biochar and the light absorption of the sample, the best efficiency by test is 74.5%. The experimental results have laid a good foundation for subsequent experiments.

並列關鍵字

phase change material silica biochar

參考文獻


[1] Abhat, Low temperature latent heat thermal energy storage: heat storage materials, Solar Energy 30 (1983) 313–332.
[2] 賴啟銘,內含微膠囊 PCM 之屋頂與外牆構造室內環境控制效能分析國科會專題研究計畫報告 2009.
[3] 紡拓會產經資訊處, Outlast 調溫纖維的應用 2009Oró, E, De Gracia, A., Castell, A., Farid, M. M., Cabeza, L. F. (2012)
[4] Review on phase change materials (PCMs) for cold thermal energy storage applications. Applied Energy, 99, 513-533
[5] Yanbing, K., Yi, J., Yinping, Z. (2003). Modeling and experimental study on an innovative passive cooling system—NVP system. Energy and buildings, 35(4), 417-425.

延伸閱讀