透過您的圖書館登入
IP:18.222.231.86
  • 學位論文

膜管式水旋風分離器之多相流模擬

Multiple Phase Flow Simulation of a Tubular-Membrane Hydrocyclone

指導教授 : 吳容銘

摘要


本研究採用直徑2.5 cm之水旋風分離器,並安裝膜管至水旋風分離器中心位置,使用黑色碳化矽粉末作為實驗粉體,並以計算流體力學軟體FLUENT的模擬作為搭配,分別討論不同的進口操作壓力下對水旋風分離器顆粒分級之影響。模擬方面則改變膜管的尺寸,並以VOF多相流模式以及LES紊流模式模擬空氣核心以及內部流場,並使用離散相模式(Discrete Phase Model)針對水旋風分離器中之顆粒運動做預測及追蹤,將模擬與實驗結果進行分析,並討論膜管尺寸對水旋風分離器的影響。 實驗與模擬結果顯示,當進口壓力越大則整體分離效率會越好,而其分級效率在8μm。對於2.5公分的水旋風分離器,膜管變細則過濾效果差,而膜管變粗過濾效果則變好,但分級效率卻會微幅下降;分級效率:膜管徑1公分>1.2公分>0.8公分;膜管濾液流量:膜管徑1.2公分>1公分>0.8公分。

並列摘要


This study uses black silicon carbide powder as experimental particles to realize its classification in a 2.5 cm diameter hydrocyclone that equips membrane tube in center position. In the experiment, the effects of variations in inlet pressure on particle size distribution efficiency were analyzed. In the simulation of the change the size of the membrane tube, the air core and the flow pattern in hydrocyclone was simulated by VOF model and LES model, and using the discrete phase model to track and predict the particle motion. The simulation and experimental results will be analyzed discuss the impact of the membrane tube size on the hydrocyclone. Experimental and simulation results show that when the inlet pressure larger the overall separation efficiency will be better, and its classification efficiency in 8 μm. For the 2.5 cm diameter hydrocyclone, membrane tube diameter becomes smaller filtering effect poor and diameter becomes larger filtering effect better than original size, but the classification efficiency will drop a little. Classification efficiency:diameter 1 cm>1.2 cm>0.8 cm. Filtering effect:diameter 1.2 cm>1 cm>0.8 cm.

並列關鍵字

Hydrocyclone CFD Discrete Phase Model Membrane tube

參考文獻


陳怡任 (2009) “水旋風分離器流場測量與模擬暨新型水旋風分離器之研究”,碩士學位論文,淡江大學化學工程與材料工程學系
Ahmed, M. M., Ibrahim, G. A., and Farghaly, M. G. (2009) “Performance of a three-product hydrocyclone.” International Journal of Mineral Processing, 91, 34-40.
Bai, Z. -s., Wang, H. -I., and Tu, S. -T. (2009a) “Experimental study of flow patterns in deoiling hydrocyclone.”Minerals Engineering, 22, 319-323.
Bai, Z. -s., Wang, H. -I., and Tu, S. -T. (2009b) “Study of air-liquid flow patterns in hydrocyclone enhanced by air bubbles.” Chemical Engineering and Technology, 32, 55-63.
Bamrungsri, P., Puprasert, C., Guigui, C., Marteil, P., Breant, P., & Hebrard, G. (2008) “Development of a simple experimental method for the determination of the liquid field velocity in conical and cylindrical hydrocyclones.” Chemical Engineering Research and Design, 86, 1263-1270.

延伸閱讀