透過您的圖書館登入
IP:3.129.70.157
  • 學位論文

內嵌式螺旋微電極之研製及其應用

Fabrication and Application of Embedded Spiral Electrodes

指導教授 : 楊龍杰

摘要


本研究係以低溫非平面製程(non-planar process)方式,製作內嵌式螺旋微電極於SU-8流道內壁。 第一部分係製作螺旋微電極;首先以電子束蒸鍍機(E-beam evaporator)於毛細玻璃管上蒸鍍鈦、金導電種子層(seeding layer),並搭配旋轉曝光(rolling exposure)的技術與後續的黃光微影製程,成型黃金螺旋微電極,再以電鍍鎳層的方式增厚電極,將厚度為5μm的鎳質螺旋微電極製作於毛細玻璃管外表面上。 第二部分係以具有鎳質螺旋微電極的毛細玻璃管作為犧牲層(sacrificial layer),搭配SU-8光阻為結構層,最後以氫氟酸(HF)溶除毛細玻璃管,即可將此鎳質螺旋微電極轉嫁於SU-8材質的流道內壁。 完成的晶片通以直流電壓25V,可成功驅動無水酒精,體積流率達4.5 μl/min;預期此晶片可應用於離子牽引式幫浦(ion drag pump)。

並列摘要


This paper proposes a low-temperature and non-planar process to fabricate spiral electrodes on the inner surface of a SU-8 circular microchannel. The fabrication process can be divided into two parts. First, the Ti/Au electric seeding layer was deposited on the cylindrical surface of a glass capillary with 350μm diameter by an E-beam evaporator. After doing a rolling exposure process by adjusting the rotation speed of the glass capillary according to the proper UV dosage and using suitable etchants respectively, the author formed the continuous gold spiral electrodes around the glass capillary. Moreover, by electroplating nickel layers of 5μm thick to improve the strength of electrodes, the nickel spiral electrodes can be achieved on the outer surface of the glass capillary successfully. Second, SU-8 photoresist was coated all over the above workpiece as a structure for the circular microchannel, then the glass capillary was removed by HF acid. Therefore, the nickel spiral electrodes were transferred to the inner surface of the SU-8 circular microchannel. The complete chip experimentally drives the ethyl alcohol to have the volumetric flow rate of 4.5 μl/min by applying a DC voltage of 25V, and can be applied as an ion drag micropump.

並列關鍵字

SU-8 non-planar rolling exposure ion drag micropump

參考文獻


[1] R. P. Feynman, “There’s plenty of room at the bottom”, Journal of Microelectromechanical Systems, Vol. 1, Issue 1, 1992, pp. 60-66.
[4] C. W. Lin and J. Y. Jang, “3D numerical micro-cooling analysis for an electrohydrodynamic micro-pump”, Sensors and Actuators A, Vol. 122, 2005, pp. 167-176.
[5] J. Darabi and K. Ekula, “Development of a chip-integrated micro cooling device”, Microelectronics Journal, Vol. 34, 2003, pp. 1067-1074.
[6] P. Woias, “Micropumps-past, progress and future prospects”, Sensors and Actuators B, Vol. 105, 2005, pp. 28-38.
[7] H. T. G. Van Lintel, F. C. M. Van De Pol and S. Bouwstra, “A piezoelectric micropump based on micromachining of silicon”, Sensors and Actuators, Vol. 15, 1988, pp. 153-167.

延伸閱讀