透過您的圖書館登入
IP:3.144.206.193
  • 學位論文

含擴展裂紋之功能性梯度壓電材料破壞分析

Fracture Analysis of a Propagating Crack in a Functionally Graded Piezoelectric Material

指導教授 : 應宜雄

摘要


本文研究功能性梯度壓電材料之裂紋擴展問題,解析無窮域含可滲透擴展裂紋之功能性梯度壓電材料受反平面剪應力的破壞問題。文中利用Yoffe模型與指數型梯度變化之假設,將滿足邊界條件的控制方程式轉為對偶積分方程式,並使用含複指數對偶積分方程法將其化為含餘弦函數的對偶積分方程,進一步轉化為第二類的Fredholm積分方程。最後求得含有限長擴展裂紋之功能性梯度壓電材料承受mode-III均佈載荷的應力強度因子解析解。數值結果計算了不同材料、不同材料梯度與裂紋擴展速度對於應力強度因子之影響,並做詳細的討論。

並列摘要


In this study, the steady-state response of a moving crack in the functional graded piezoelectric materials (FGPM) is investigated. The material parameters are assumed to vary exponentially and Yoffe's model is adopted. The governing equations for FGPM are solved by use of Fourier consine transform. The formulation for the boundary conditions is derived as a system of dual integral equations, which in turn are reduced to Fredholm integral equation of the second kind. The obtained solutions can be reduced to existing solutions in the literature. Numerical results for stress intensity factors are evaluated and discussed in detail.

參考文獻


黃俊元 (2006),含界面裂紋之雙異質壓電材料暫態解析,淡江大學航空太空工程學所碩士論文。
廖雪吩 (2007),應用數值拉普拉斯逆轉換法於壓電材料動力破壞之研究,淡江大學航空太空工程學系碩士班碩士論文。
許吉勝 (2008),含有限長裂紋之彈壓電複合層板動力破壞分析,淡江大學航空太空工程學系碩士班碩士論文。
Atkinson, C., (1978) “Steady state crack propagation into media with spatially varying elastic properties, ” International Journal of Engineering Science, Vol. 16, pp. 717-730.
Copson E T., (1961) “On certain dual integral equation,” Glasgow Math, Association.

被引用紀錄


陳昭宏(2012)。含界面裂紋之雙異質功能性梯度壓電複合材料動力破壞分析〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2012.00242

延伸閱讀