透過您的圖書館登入
IP:216.73.216.100
  • 學位論文

全方位模糊運動控制器之設計與實現

Design and Implementation of Omnidirectional Fuzzy Motion Controller

指導教授 : 翁慶昌

摘要


本論文應用模糊系統概念提出一個全方位移動控制器,其可以控制一個具有n個全方位輪(omnidirectional wheel)之全方位移動機器人(omnidirectional mobile robot)朝任意方向做快速有效的移動。首先,本論文推導具有n個全方位輪之全方位移動機器人的運動模型,然後依據機器人目前所在的位置與車頭方向以及期望到達的目標位置與車頭方向所得到三個訊息來作為全方位移動控制器的輸入,此控制器具有四個模組:(a)平移模糊系統、(b)旋轉模糊系統、(c)二維速度對應與(d)全方位運動模型。而控制器的輸出為各個全方位輪之直流馬達的轉速控制訊號以及轉向控制訊號。在模擬與硬體實現上,本論文將所提之方法實現在四輪全方位移動機器人的控制上。從模擬與硬體實現結果可知,所提全方位移動控制器確實可以有效的控制四輪全方位移動機器人之移動速度與旋轉速度,讓機器人快速移動至所期望的位置及方向。

並列摘要


In this thesis, an omnidirectional motion controller is proposed so that an omnidirectional mobile robot with n omnidirectional wheel can effectively move toward any direction. First, an n-wheeled omnidirectional mobile chassis is described and its kinematic model is derived. Then, a control structure is proposed to control this omnidirectional mobile robot. There are four main modules: (a) Mobile fuzzy system, (b) Rotational fuzzy system, (c) Velocity decomposition, and (d) Omnidirectional kinematic model. Based on the distance between the desired position and the current position of the robot and the desired rotational angle, two two-input-and-one-output fuzzy systems in this control structure are proposed to determine a mobile velocity and an angular velocity of the robot, respectively. Then, the velocities of n wheels are generated to control this n-wheeled omnidirectional mobile robot so that it can move to the desired position and orientation efficiently. A four-wheeled mobile robot is considered in the simulation and implementation. Some simulation and comparison results are presented to illustrate that the control performance of the four-wheeled omnidirectional mobile robot is better than that of the two-wheeled mobile robot. In the practical application, we can also find that this method can efficiently control this four-wheeled mobile robot to any desired position and orientation.

參考文獻


[23] 王文俊,認識Fuzzy,全華科技股份有限公司,2001。
[26] 張智星,MATLAB程式設計與應用,清蔚科技股份有限公司, 2000。
[4] E. Nakano, Y. Mori, and T. Takahashi, “Study of the mechanism and control of omni-directional vehicle,” 12th Annual Conference of RSJ, pp. 369-379, 1994.
[6] Z. Li, J. Chen, and J. Feng, “Design of an omni-directional mobile microrobot (OMMR-I) for a micro-factory with 2mm electromagnetic micromotors,” Robotica, vol. 23, pp. 45-49, 2005.
[7] A. Nishikawa, M. West, and H. Asada, “Development of a holonomic omnidirectional vehicle and an accurate guidance method of the vehicles,” J. Robotics Society of Japan, vol. 13, no. 2, pp. 249-256, 1995.

被引用紀錄


黃彥捷(2017)。大型人形機器人之靜態站立平衡〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2017.00405
林羿丞(2016)。自適應三指夾爪之力量及位置控制〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2016.01050
林書緯(2016)。利用手勢控制機器人之介面設計〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2016.01048
彭千恩(2016)。夾爪控制器的設計與實現〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2016.00067
張瀚升(2015)。自適應三指夾爪及其模糊控制器設計〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2015.00205

延伸閱讀