透過您的圖書館登入
IP:216.73.216.100
  • 學位論文

延續法解泛函微分方程

A Continuation Method for Solution of Functional Differential Equation

指導教授 : 楊定揮

摘要


對於此次的研究中,針對解決離散空間上的反應擴散方程行進波問題。首先使用基於隱型Runge-Kutta演算程序(Implicit Runge-Kutta)、配置法則(Collocation Method) 等泛函微分方程(Functional Differential Equations, FDE)技巧,以上述數值計算方法處理典型 bistable型離散空間上的反應擴散方程。其中包含以延續法(Continuation Method)之數值技巧作為解決行進波問題的對策。並在文章最後列舉兩個實際實驗結果的呈現。

關鍵字

延續

並列摘要


In this work, traveling wave solutions for reaction-diffusion equations on a discrete spatial domain are considered. We use the collocation method based on k-stage implicit Runge-Kutta scheme to compute numerically the functional differential equation which is the profile equation of some typical bistable spatial discrete reaction diffusion equation. Numerical techniques for solving the traveling wave equations include the continuation method. Finally, some numerical results are presented.

參考文獻


[1] Kate A Abell, Christopher E Elmer, A. R Humphries, and Erik S Van
Vleck, Computation of mixed type functional di?erential boundary value
Frasca, The cnn paradigm: shapes and complexity, Internat. J. Bifur.
[3] PeterWBatesandAdamChmaj, A discrete convolution model for phase
transitions, Arch. Ration. Mech. Anal. 150 (1999), no. 4, 281–305.

延伸閱讀


國際替代計量