透過您的圖書館登入
IP:18.219.95.244
  • 學位論文

二氧化釕及二氧化銥奈米柱、電荷密度波K0.3MoO3及高密度二氧化矽之電子結構研究

Electronic Structures of RuO2, IrO2 Nanorods, Charge-density-wave K0.3MoO3 and High-density SiO2

指導教授 : 彭維鋒

摘要


本論文利用X光吸收光譜(X-ray absorption spectroscopy, XAS)、X光光電子能譜(X-ray photoelectron spectroscopy, XPS)及掃描式光電子能譜顯微術(Scanning photoelectron microscopy, SPEM)等技術來探討凝態材料的電子與原子結構,包括二氧化釕(RuO2)及二氧化銥(IrO2)奈米柱(nanorods)、藍青銅礦(K0.3MoO3)準一維材料及高密度的二氧化矽薄膜(SiO2 thin films)等。 在二氧化釕及二氧化銥奈米柱的研究中,因為釕d軌域其電子數相較於銥是較少以致影響其混成鍵結強度,使得二氧化銥其導電性質較二氧化釕為差;並且在二氧化釕的奈米柱尖端相較二氧化銥有更大的電子態密度,顯示二氧化釕奈米柱在場發射的應用上可預期是較好的材料。在藍青銅礦準一維材料中,利用同步輻射光的偏極性,發現在臨近電荷密度波(Charge-Density-Wave, CDW)相變點溫度時,K+離子的存在與其不同晶軸的電子結構和準一維系統之異向性有相當重要的關聯。高密度的二氧化矽薄膜中,由實驗結果觀察出不同的薄膜成長方式會導致不同密度的矽-氧混成鍵結而影響其電子結構,因此可以透過改變成長方法來提高二氧化矽薄膜中矽-氧的混成鍵結密度,並藉此調控其介電常數。

並列摘要


In this thesis, it is used the X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS) and scanning photoelectron microscopy (SPEM) to discuss the electronic and atomic structure of different condensed materials including RuO2 and IrO2 nanorods, quasi-one-dimension (1-D) blue bronze K0.3MoO3 and high-density SiO2 thin films. In RuO2 and IrO2 nanorods research, the results reveal that the hybridization between O 2p and metal t2g obitals is weaker in IrO2 than in RuO2. The tip-region enhancement of the SPEM intensity is greater for RuO2 than for IrO2, which suggests that RuO2 be a better material for field emission application. In 1-D blue bronze K0.3MoO3 material, the existence of the K+ ion has play an important role to connect the MoO3 octahedral structure and maintain the anisotropy structure in the charge-density-wave (CDW) transition. In the high density SiO2 thin films, we discovered that the different growth processes will cause the vary Si–O bonding, therefore we can control the dielectric parameter by changing the growth method.

並列關鍵字

Synchrotron Radiation XAS XPS SPEM

參考文獻


[1]. [1]. M. A. Kastner, Phys. Today, 46, 24 (1993).
[2]. L. Brus, Appl. Phys. A, 53, 465 (1991).
[3]. L. N. Lewis, Chem. Rev., 93, 2693 (1993).
[5]. D. D. Awschalom and D. P. DiVincenzo, Phys. Today, 48, 43 (1995).
[7]. H. M. Tsai, P. D. Babu, C. W. Pao, J. W. Chiou, J. C. Jan, K. P. Krishna Kumar, F. Z. Chien, W. F. Pong, M. –H. Tsai, C. –H. Chen, L. Y. Jang, L. F. Lee, R. S. Chen, Y. S. Huang, and D. S. Tsai, Appl. Phys. Lett. 90, 042108 (2007).

延伸閱讀