透過您的圖書館登入
IP:3.149.244.86
  • 學位論文

以ARM 架構處理器實現太陽能無人飛機的導引控制

Implementation of Guidance Law in A Solar-powered UAV Using the ARM Architecture Processor

指導教授 : 蕭富元

摘要


本論文探討使用ARM 架構處理器來實現導引律。作為太陽能無人飛機的子 計畫之一,本研究必須考量兩項天然的限制:導引律必須能在機載端實現;可用的飛機功率有限。本研究計畫在機載端使用ARM 架構處理器來產生導引命令,以進一步提供給飛機作為姿態控制使用。所謂的“追逐胡蘿蔔演算法” 則是本研究所使用的導引律。為了滿足功率限制,我們採用“最佳水平轉彎” 演算法來實現“追逐胡蘿蔔演算法”。我們也對市售導航感測器與通訊元件進行相關測試,作為日後系統整合的準備。X-plane 也在本研究中用來進行硬體迴路測試(hardware-in-loop)。由模擬結果得知,本研究中,硬體與演算法的整合可以運作得很好;將來太陽能無人機建造好之後,也可以直接將之應用至飛行測試上。

並列摘要


This thesis investigates the implementation of guidance law using the ARM architecture processor. As a sub-project of developing a solar powered unmanned aerial vehicle (UAV), two constraints are imposed on this project: the guidance law must be implemented onboard, and the power is limited. In this research an ARM architecture processor is introduced to generate the guidance command for attitude control onboard. The so-called “Carrot chasing” is selected as the guidance law, and the optimal level turn is employed to realize carrot chasing in order to satisfy the power constraint. Commercial navigation sensors, and telemetry and communication kits are also tested for future system integration. The X-plane is employed for the hardware-in-loop simulations. The simulated results demonstrate that the integration of hardware and guidance algorithm is functional, and applicable to flight tests once the Solar-powered UAV is constructed.

參考文獻


[6] 鄭玉祥, 無人飛行載具之航電系統整合, 淡江大學碩士論文, 新北市, 2009.
[11] 杜偉德, 太陽能無人飛行載具之最佳化水平轉彎, 淡江大學碩士論文, 新北市, 2015.
[13] 李正凱, 整合全球定位系統與慣性導航系統的初始校準設計與實現, 淡江大學碩士論文, 新北市, 2006.
[8] P.B. Sujit, Srikanth Saripalli, Joao Borges Sousa, “A survey and analysis of algorithms for fixed-wing Unmanned Aerial Vehicles, ” IEEE Control Systems Magazine, 42-59, 2014.
[10] Der-Ming Ma,Jaw-Kuen Shiau, Yu-Ju Su, and Ying-Hsien Chen, “Optimal Level Turn of Solar-Powered Unmanned Aerial Vehicle Flying in Atmosphere, ” Journal Of Guidance, Control, And Dynamics, Vol. 33, No. 5, Taiwan, 1347-1356, 2010.

延伸閱讀