透過您的圖書館登入
IP:3.142.201.222
  • 學位論文

生質汽油之製程設計與整合

Production of Biogasoline: a Chemical Process Design and Integration

指導教授 : 陳錫仁

摘要


本文主要進行生質物轉製生質汽油之化工設計與整合,以生質汽油年產量1萬公噸為設計目標,分別進行三個製程:(1) 生質物製造合成氣;(2) 合成氣製造二甲醚;(3) 二甲醚轉製汽油。研究中針對「合成氣轉製汽油(StG)」製程進行熱能整合與經濟評估,比較節能效率及年製造成本,其中以冷熱複合曲線間之最小趨近溫度ΔTmin=5oC為節能效率最好,其熱公用設施減少89%,冷公用設施減少32%,化石能源比 (FER) 從1.8提升至5.1。然而,在經濟評估中,吾人發現年製造成本與生質汽油每公升之製造成本以ΔTmin=10oC時最小。在熱能整合前為US$17.0×106/yr及US$0.97/L,在熱能整合後,在ΔTmin=10oC時分別減為US$14.4×106/yr及US$0.79/L,故選擇 10oC為最佳方案,其FER值為4.7,並繪製其StG最後組態設計圖。 本論文中主要利用兩套化工軟體進行研究:“Aspen Plus” 與 “SuperTarget”。前者主要是用於程序合成、設計與模擬;後者則是進行狹點分析與換熱器網路合成。

並列摘要


In this thesis, we have presented a chemical process design and integration for the production of biogasoline from biomass. The goal is set at 10,000 tonnes/yr of biogasoline. The whole process integrates three sub-processes: (1) syngas production from the biomass (BtS), and (2) dimethyl ether production from syngas (StD), and (3) production of biogasoline from dimethyl ether (DtG). In particular, we have carried out a heat integration associated with its engineering economic evaluation for the“production of biogasoline from syngas (StD + DtG)”, compared the energy savings, yearly cost of manufacture and fossil energy ratio (FER). The results showed that the minimum approach temperature (ΔTmin = 5oC) between the hot and cold composite streams saves most with 89% hot-utility energy saving and 32% cold-utility energy saving, and the FER increased from 1.8 (base-case design) to 5.1. However, as seen from the economic analysis, we found that the yearly cost of manufacture and cost of biogasoline per liter are lowest using ΔTmin = 10oC. Consequently, we chose ΔTmin = 10oC as our final design scheme. The yearly cost of manufacture for ΔTmin = 10oC drops from US$17.0×106/yr (base-case design) to US$14.4×106/yr, cost of biogasoline per liter drops from US$0.97/L (base-case design) to US$0.79/L , and the FER rises from 1.8 to 4.7. Two kinds of software were utilized in the research, Aspen Plus and SuperTarget. The former was used to implement the process synthesis, design, and simulation; the latter was used to perform the pinch analysis and the synthesis of heat-exchanger network.

參考文獻


【1】 陳維新、李灝銘,生質物前處理與氣化技術,化工,第五十九卷,第一期,第3-13頁 (2012)。
【3】 郭立峰、潘冠綸、張木彬,生質汽油程序硫化物氣體淨化技術,化工,第五十九卷,第一期,第14-23頁 (2012)。
【10】 王銘忠,化工製程模擬之熱力學模式,化工,第58卷,第3期,第70-84頁 (2011)。
【18】 謝政廷、李灝銘,生質汽油產製技術,化工,第五十九卷,第一期,第35-41頁 (2012)。
【12】 Linnhoff, B., and J. R. Flower, Synthesis of Heat Exchanger Networks – 1: Systematic Generation of Energy Optimal Networks, AIChE J., 24, 633-642 (1978).

被引用紀錄


黃筱涵(2014)。甘油變汽油之製程研究暨其工程經濟分析〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2014.00304

延伸閱讀