透過您的圖書館登入
IP:3.16.66.206
  • 學位論文

動態平衡移動機器人設計與實現

Design and Implementation of Dynamic Balancing Mobile Robots

指導教授 : 許駿飛
本文將於2025/06/01開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


本論文所考慮的動態平衡移動機器人有兩輪平衡移動機器人、兩輪平衡跳躍移動機器人、共線式麥輪平衡移動機器人與球輪平衡移動機器人等四種不同機構,整個動態平衡移動機器人不管在機構設計製作上或在控制器設計上均是複雜且困難的,非常適合學術研究且要開發很多相關的關鍵技術。相較於一般輪型移動機器人的設計與製作,由於平衡移動機器人具有不穩定、非線性以及欠致動性等特性,其兼具移動與平衡能力之控制器設計極具有挑戰性。本論文所製作的兩輪平衡移動機器人上加裝了機械雙手臂,更容易造成機器人重心位置改變影響平衡效果;兩輪平衡跳躍移動機器人上加裝了彈跳機構,可以提供機器人跳躍能力克服地形的限制;共線式麥輪車平衡移動機器人採用了四輪共線式麥克納姆輪設計,除了可以提供機器人動態平衡能力,更可以提供機器人側向移動能力;球輪平衡移動機器人採用了三個全向輪帶動圓球產生全方位的移動能力,可以隨時隨地的朝任一方向移動。在控制器設計方面,本論文基於多迴路控制架構設計方法,提出了智慧型平衡移動控制器來控制上述介紹的各種不同動態平衡移動機器人,其中雙迴路模糊控制器主要用來控制機器人可以前後移動至指定位置並保持機器人直立不倒,轉向控制器主要用來控制機器人可以左右旋轉至指定方向,並配合不同機器人機構設計搭配不同馬達力矩坐標轉換公式,將控制輸出量轉換成實際各馬達輸出量,進而改變機器人移動方向與速度。同時,由於所提出之智慧型平衡移動控制器並不需要太多的計算負擔,本論文進一步地結合微電腦單晶片技術,實際硬體實現所設計之智慧型平衡移動控制法則。最後,經由實驗結果可以發現所提出之智慧型平衡移動控制器,均可以有效地控制各種不同的平衡移動機器人,甚至當有系統參數變化或外力干擾下,依舊可以獲得不錯的機器人移動控制響應結果。

並列摘要


This thesis considers the design of the two-wheeled balancing mobile robot(TBMR), two-wheeled balancing and jumping mobile robot(TBJMR), collinear-Mecanum-wheeled balancing mobile robot(CBMR), and ball-wheeled balancing mobile robot(BBMR). These robot platforms are very suitable for academic research, because they are difficult to design regardless of the mechanism design and controller design. Compared to multi-wheeled mobile robot, the design and implementation of the balancing mobile robots is more difficult, complex, and challenging due to that its system dynamic is unstable, nonlinear, and under-actuated configuration. In this thesis, the TBMR is equipped with 4-DOF dual arms; however, the robot arm operation will affect the balancing control performance. The TBJMR is equipped with a jumping mechanism to help robots overcome the ground limitation. The CBMR uses four colinear Mecanum wheels, thus, the CBMR not only can provide dynamic balancing ability but also can provide the move sideway ability. The BBMR uses three omnidirectional wheels on a ball. It can directly move any direction. For the controller design, the objective of this thesis is to develop an intelligent balancing and motion control (IBMC) system for the TBMR, TBJMR, BBMR and CBMR systems based on fuzzy control approaches. The proposed IBMC system is comprised of a double-loop fuzzy controller and a turning controller, where the double-loop fuzzy controller can control the robots moving and reaching a desired position while keeping balanced. The turning controller enables the robots unlimited rotation along its vertical axis. Further, different torque conversion formulas are derived according to different robot mechanism design. It can convert the controller output to each motor control command. In additional, since computational load of the proposed IBMC method is moderate, an inexpensive microcontroller is used for hardware implementation. Finally, the experimental results show that the proposed IBMC system can successfully control the TBMR, TBJMR, CBMR and BBMR to achieve favorable control responses in the presence of system uncertainties and external disturbances.

參考文獻


REFERENCES
[1] Huang, H.C. and Tsai, C.C.: FPGA Implementation of an embedded robust adaptive controller for autonomous omnidirectional mobile platform. IEEE Transactions on Industrial Electronics 56(5), pp. 1604–1616, 2009.
[2] Sharbafi, M.A., Lucas, C., and Daneshvar, R.: Motion control of omni-directional three-wheel robots by brain-emotional-learning-based intelligent controller. IEEE Transactions on Systems, Man and Cybernetics - Part C: Applications and Reviews 40(6), pp. 630–638, 2010.
[3] Kim, K.B. and Kim, B.K.: Minimum-time trajectory for three-wheeled omnidirectional mobile robots following a bounded-curvature path with a referenced heading profile. IEEE Transactions on Robotics 27(4), pp. 800–808, 2011.
[4] Suzumura, A. and Fujimoto, Y.: Real-time motion generation and control systems for high wheel-legged robot mobility. IEEE Transactions on Industrial Electronics 61(7), pp. 3648–3659, 2014.

延伸閱讀