透過您的圖書館登入
IP:3.143.5.121
  • 學位論文

一些更細緻的Hadamard不等式

Some refinements of Hadamard Inequality

指導教授 : 楊國勝

摘要


如果 f: [a,b] → ℝ 為[a,b]中的凸函數,則 f((a+b)/2) ≤ 1/(b-a)∫_a^b ▒〖f(x)dx ≤ 1/(2) [f(a)+f(b)]〗 (1.1) 恆成立,為眾所週知的Hermite-Hadamard不等式 如果 f為[a,b]中的凸函數,是否存在實數 l及 L滿足下列不等式: f((a+b)/2)≤ l ≤1/(b-a )∫_a^b▒〖f(x)dx ≤ L ≤ 1/(2) [f(a)+f(b)] 〗 (1.2) 本論文研究的主要目的是為了提供這問題 (1.2) 更多的一些答案

並列摘要


If f : [a,b] → ℝ is convex on [a,b], then f((a+b)/2) ≤ 1/(b-a)∫_a^b▒〖f(x)dx ≤ 1/(2) [f(a)+f(b)]〗 (1.1) This is the classical Hermite-Hadamard inequality If f is a convex function on [a,b] , do there exist real numbers l , L such that f((a+b)/2)≤ l ≤1/(b-a)∫_a^b▒〖f(x)dx ≤ L ≤ 1/(2) [f(a)+f(b)] 〗 (1.2) The main purpose of this paper is to give some answers to the question (1.2)

參考文獻


[2] M.BESSENYEI AND ZS. PÁLES, Hadamard-type inequalities for generalized convex functions.Math.Inequal.Appl.,6,(2003),379-392.
[3] S.S. DRAGOMIR AND C.E.M. PEARCE, Selected Topics on Hermite-Hadamard Inequalities, (RGMIA Monographs http://rgmia.vu.edu.au/mmonographs/Hermite-hadamard.html), Victoria University, 2000.
[4] A. EL FARISSI, Simple proof and refinement of Hermite-Hadamard inequality, Journal of Mathematical Inequalities, Vol. 4, No. 3 (2010), 365-369.
[5] A. EL FARISSI, Z. LATREUCH, B. BELAÏDI, Hadamard-Type Inequalities for Twice Differentiable Functions, RGMIA, Reseaech Report Collection, 12. 1 (2009), Art. 6.
[6] A . M . FINK , A best possible Hadamard inequality Math . Inequal Appl.,1,2(1998),223-230.

延伸閱讀