透過您的圖書館登入
IP:3.14.6.194
  • 學位論文

維生素D及輔酶Q10補充改善高脂飲食及streptozotocin誘導糖尿病小鼠肌肉氧化壓力、發炎及骨骼肌蛋白質異化作用之功效

Vitamin D and coenzyme Q10 supplementation improve muscle oxidative stress, inflammation and protein catabolism in high fat diet and streptozotocin induced diabetic mice

指導教授 : 劉凱莉

摘要


第一型糖尿病(Type 1 diabetes mellitus,Type1 DM)高血糖經由發炎反應及氧化壓力,提高肌肉泛素蛋白酶體途徑(Ubiquitin-proteasome pathway,UPP)及自噬作用-溶酶體途徑(Autophagy-lysosome pathway,ALP),增加蛋白質的異化,造成骨骼肌肌肉耗損的惡病質,影響病患生活品質及增加死亡率。輔酶Q10 (coenzyme Q10,亦稱為Ubiquinone)參與電子傳遞鏈產生ATP的必須輔因子,有抗氧化及抗發炎功效。維生素D有保護骨骼、抗癌和抗發炎等作用。本研究以高脂飲食及連續腹腔注射streptozotocin (STZ,50 mg/kg)五天誘發第一型糖尿病高血糖小鼠模式,評估補充維生素D (8.3 μg/kg)及輔酶Q10 (100 mg/kg)對糖尿病高血糖誘發骨骼肌肉耗損的功效與相關機制。結果顯示,相較於血糖正常的控制組,糖尿病高血糖除顯著減少小鼠體重外,亦減少骨骼肌肉重量與橫切面面積和Myosin heavy chain (MyHC)蛋白質表現,而補充維生素D及輔酶Q10可改善高血糖造成的惡病質。補充維生素D及輔酶Q10可減少高血糖誘發骨骼肌內c-Jun N-terminal kinase磷酸化與Myostatin蛋白質表現,減少細胞核內Forkhead transcription factor 1 (FoxO1)、Nuclear factor kappa B (NF-κB)及Signal transducer and activator of transcription 3 (STAT3) 等與肌肉蛋白質分解相關轉錄因子表現,進而抑制小鼠骨骼肌UPP和ALP的相關因子Atrogin-1、Muscle RING finger protein1 (MuRF1)、Microtubule-associated protein 1A/1B-light chain 3及caspase-3的表現量。此外,相較於糖尿病高血糖小鼠,補充維生素D及輔酶Q10可提高小鼠肌肉內抗氧化酵素catalase、glutathione reductase、superoxide dismutase2、heme oxygenase-1表現和抑制腓腸肌內tumor necrosis factor alpha、interleukin-1β及interleukin-6 mRNA表現,減少紅血球、腎臟、肝臟及股四頭肌脂質過氧化物含量。綜合以上可知,維生素D及輔酶Q10補充可能透過減少JNK、Myostatin訊息傳遞與減少FoxO1、NF-κB與STAT3活化,降低UPP及ALP路徑相關分子表現、活性氧物質及發炎反應並提高抗氧化酵素蛋白,改善糖尿病高血糖引起的惡病質。

並列摘要


Hyperglycemia in Type 1 diabetes through increases in inflammation and oxidative stress upregulates the ubiquitin-proteasome pathway (UPP) and the autophagy-lysosome pathway (ALP) which augment muscle protein catabolism resulting in muscle wasting. Hyperglycemia induced cachexia characterized by body and muscle weight loss could influence life quality and increase mortality in type 1 diabetic patients. Coenzyme Q10 known as ubiquinone, cofactor of the electron transporter in the respiratory chain to produce ATP, is potent in anti-oxidation and anti-inflammation. Vitamin D has healthy benefits in skeletal health, anti-cancer and anti-inflammation. In this study, the high fat diet and injection of streptozotocin (STZ, 50 mg/kg) for five continuous days to induce type 1 diabetes in C57BL/6J mice is used to assay the effect and possible mechanisms of dietary supplementation vitamin D with coenzyme Q10 on hyperglycemia induced muscle wasting. Compared with normal blood sugar mice, our data showed that hyperglycemia induced not only body weight loss, but also decreases in muscle weight and crosssection area as well as myosin heavy chain expression. Dietary supplementation vitamin D with coenzyme Q10 diminished hyperglycemia induced cachexia. Dietary supplementation vitamin D with coenzyme Q10 reduced hyperglycemia induced the activation of signal transducer and transcription factors related to muscle catabolism such as phosphorylated c-Jun N terminal kinase and Myostatin protein as well as nuclear protein expression of Forkhead transcription factor 1, Nuclear factor kappa B and Signal transducer and activator of transcription 3, respectively. Moreover, dietary supplementation vitamin D with coenzyme Q10 could decrease hyperglycemia induced UPP and ALP related molecules such as Atrogin-1, Muscle RING finger protein1mRNA, Microtubule-associated protein 1A/1B-light chain 3 and caspase-3 expression in gastrocnemius muscle. Compare with hyperglycemic mice, supplementation with vitamin D and coenzyme Q10 not only inhibited the tumor necrosis factor alpha, interleukins-1β and interleukins-6 mRNA but also reduced red blood cell, kidney, liver and quadriceps femoral muscle malondialdehyde concentration, and increase the expression of antioxidant enzymes such as catalase, glutathione reductase, Superoxide dismutase2 and Heme oxygenase-1 expression. Summarily, our data suggested that vitamin D and coenzyme Q10 supplementation decreased diabetes mellitus hyperglycemic induced muscle wasting is through decreases in JNK and Myostatin signal transduction, and FoxO1, NF-κB and STAT3 activation lessened UPP and ALP related molecules expression, ROS and pro-inflammatory cytokine production and upregulates antioxidant protein expression.

參考文獻


1. Atkins RC, Zimmet P. Diabetic kidney disease: act now or pay later. Nephrol Dial Transplant 2010;25(2):331-3.
2. Zhao J, Randive R, Stewart JA. Molecular mechanisms of AGE/RAGE-mediated fibrosis in the diabetic heart. World J Diabetes 2014;5(6):860-7.
3. Frier BC, Noble EG, Locke M. Diabetes-induced atrophy is associated with a muscle-specific alteration in NF-kappaB activation and expression. Cell Stress Chaperones 2008;13(3):287-96.
4. Krause MP, Riddell MC, Hawke TJ. Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes 2011;12(4 Pt 1):345-64.
5. Grontved A, Pan A, Mekary RA, Stampfer M, Willett WC, Manson JE, Hu FB. Muscle-strengthening and conditioning activities and risk of type 2 diabetes: a prospective study in two cohorts of US women. PLoS Med 2014;11(1):e1001587.

延伸閱讀