透過您的圖書館登入
IP:18.222.240.21
  • 學位論文

使用奈米碳材料利用電化學法偵測藥物研究

Carbon based nanomaterials for the electrochemical determination of Pharmaceutical drugs

指導教授 : 陳生明

摘要


本論文研究使用奈米碳材料作為修飾電極偵測各種不同藥物,研究修飾電極有石墨烯、石墨烯氧化物、羧酸化的石墨烯氧化物、還原態的石墨烯氧化物、聚氨基酸和多層奈米碳管。羧酸化的石墨烯氧化物帶有羧基,使得帶正電荷的聚賴氨酸氨基團和帶負電荷的羧酸化石墨烯氧化物之間形成靜電作用力,增加薄膜的穩定性。羧酸化的石墨烯氧化物提供較大的表面積,使得聚賴氨酸更容易沉積在修飾電極上,對非類固醇消炎止痛藥meloxicam的偵測呈現良好的電催化活性。合成具電化學活性的聚苯胺石墨烯奈米複合材料於玻璃碳電極上,並利用電化學法偵測非類固醇消炎止痛藥diclofenac,此電化學感測器的優點具良好的線性範圍、靈敏度和容易製備。電化學還原石墨烯氧化物因為靜電力更容易利用電化學法聚合甲硫氨酸於玻璃碳電極,製備聚甲硫氨酸/電化學還原石墨烯氧化物修飾電極用來偵測抗結核病藥物pyrazinamide,此製備電極具有良好的還原峰、線性範圍、偵測極限和靈敏度。 利用多層奈米碳管修飾電極製備一個簡單和靈敏度佳的buspirone hydrochloride感測器,由於多層奈米碳管具有良好的導電性、良好的機械強度、比表面積大和穩定性佳,電分析領域經常使用多層奈米碳管作為材料,此修飾電極呈現buspirone hydrochloride的電氧化反應,並利用不同的伏安法,說明此電極有很好的靈敏度、偵測極限和偵測範圍。石墨烯氧化物/多層奈米碳管之間有協同效應和高邊緣密度的優越表現,可以提升電子轉移和降低材料衰敗。此兩種不同奈米材料的特性亦可增加dopamine和paracetamol的電催化氧化反應。本研究之電化學方法已成功地運用於藥物偵測,偵測結果與藥劑的標示相符,以證實此方法的實用性,除此之外,真實樣品的測量結果也令人滿意。

關鍵字

石墨烯 奈米碳管 胺基酸 藥物

並列摘要


This thesis study report the various pharmaceutical drugs determinations at carbon nanomaterials based fabricated modified electrodes. The characterization studies performed for the modified electrodes of graphene, graphene oxide, carboxylated graphene oxide, reduced graphene oxide, poly-amino acids and multiwalled carbon nanotubes. Carboxylated graphene oxide has plenty of carboxyl groups after carboxylation, further an electrostatic interactions between the positively charged amino groups of poly lysine and negatively charged carboxylated graphene oxide adds good stability to the film. The large surface area of carboxylated graphene oxide could provide more poly lysine to deposit on the modified electrode and this modified electrode shows good electrocatalytic activity for the non-steroidal anti-inflammatory drug meloxicam determination. We fabricated the synthesized electrochemically active poly-aniline graphene nano-composite and fabricated the film on glassy carbon electrode and electrochemically determined non-steroidal anti-inflammatory drug diclofenac. The proposed electrochemical sensors have advantages of good linear range, selectivity and ease of fabrication. The electrochemically reduced graphene oxide could easily form electrostatic interactions with electrochemically polymerized methionine amino acid on glassy carbon electrode. The fabricated poly-methionine/electrochemically reduced graphene oxide modified electrode has been employed for the determination of anti-tuberculosis drug pyrazinamide. The fabricated electrode shows good reduction peak with an impressive linearity range, limit of detection and selectivity. A simple and sensitive pharmaceutical drug buspirone hydrochloride sensor was developed based on multiwalled carbon nanotubes modified electrode. The special properties of multiwalled carbon nanotubes have exclusively used in the electroanalytical field due to its good electrical conductivity, mechanical strength, high surface area and stability. The modified electrode displayed the electro-oxidation for buspirone hydrochloride drug, and has been determined by using different voltammetric techniques; the obtained results are good in sensitivity, detection limit and linearity ranges. The superior performance of the graphene oxide/ multiwalled carbon nanotubes has synergic effect and high edge density between each. The exceptional properties of graphene oxide and multiwalled carbon nanotubes could enhance the electron transfer as well as reduce the fouling effect of multiwalled carbon nanotubes. The unique properties of these two different nanomaterials could enhance the electrocatalytic oxidation of dopamine and paracetamol. The proposed electrochemical method has been successfully employed for the pharmaceutical formulated samples to confirm the applicability of the method; the obtained results are good agreement with the label claim of the tablets. In addition the real sample studies are carried to demonstrate the practicality of the fabricated electrodes, the obtained results are satisfactory.

參考文獻


[1] A. K. Geim, Science 324 (2009) 1530.
[4] K. I. Bolotin , K. J. Sikes , Z. Jiang , M. Klima , G. Fudenberg , J. Hone , P. Kim , H. L. Stormer , Solid State Commun 146 (2008) 351.
[9] C.R. Martin, P. Kohli, Nat. Rev. Drug Discov 2 (2003) 29.
[10] D. Bechet, Trends Biotechnol 26 (2008) 612.
[11] W. Choi, I. Lahiri, R. Seelaboyina, Y. S. Kang, Crit. Rev. Solid State Mater. Sc 35 (2010) 52.

延伸閱讀