透過您的圖書館登入
IP:18.117.183.172
  • 學位論文

利用碳材為基底結合金屬奈米粒子修飾應用於生物分子之感測研究

Carbon-based with Metal Nanoparticles for Biomolecule determination

指導教授 : 陳生明

摘要


第一部分 我們在這項研究裡發表了一個新型且靈敏的方法來偵測對苯二酚(HQ)和鄰苯二酚(CC)。利用循環伏安法(CV)和微分脈衝伏安法(DPV)在最佳條件下發現可將對苯二酚(HQ)和鄰苯二酚(CC)完全的分離。DPV與CV相比,在偵測對苯二酚(HQ)和鄰苯二酚(CC)時,可提供較大的峰值電位分離,以及較高的反應靈敏度。DPV在同時偵測HQ和CC時,表現出電流與濃度間很好的線性關係。在40μM的CC下,利用Pt/ZrO2-RGO/GCE在DPV下偵測HQ,可發現還原峰電流會隨著HQ濃度的增加而增加 ,濃度範圍在1到1000μM,偵測極限為0.4μM (S/ N = 3)。在同一時間,HQ為40μM下,氧化電流與CC有良好的線性關係,濃度範圍為1到400μM,偵測極限為0.4μM (S/N = 3)。此外,Pt/ZrO2-RGO/GCE這個複合薄膜修飾電極,在廢水樣本中,成功地同時偵測到HQ和CC的濃度,並且展現出良好的回收率。這些結果證明了這個複合薄膜修飾電極,在電化學感測以及電催化應用上是一個具有發展性的材料。 第二部分 混價錳銅複合物的電化學合成已經被成功的製作並且利用石墨烯氧化物及多層奈米碳管當作具導電性及立體混合奈米模板。MnCu/MWCNT/GO的型態顯示出緊湊及奈米多孔結構,由於MWCNT/GO奈米模版的高導電性和高立體空間,所以提供了銅錳氧化物(CuMn2O4)、黑銅礦(CuO)及黑錳礦(Mn3O4)等混價複合材料的形成。從葡萄糖氧化的電催化活性顯示出有較高的電流響應以及較低的過電位。在CV和LSV的技術中顯示出在葡萄糖氧化時有同樣的氧化峰(Epa = +0.05 V)。特別的是,在適當的控制脈衝參數下,DPV會顯示出較低的氧化峰電位(Epa = -0.05 V)。MnCu/MWCNT/GO複合材料在CV、LSV和DPV下的靈敏度分別為49.1、58.6和 59.3 μA mM-1 cm-2。線性範圍為0–32 mM,偵測極限為1×10-6 M (S/N ≧ 3)。錳銅複合物的共固定化及活性可以利用MWCNT及GO有效的增強,並且應用在葡萄糖的檢測。 第三部分 碳糊電極對於多巴胺(DA)、抗壞血酸(AA)和尿酸(UA)具有電催化活性。電催化的氧化電流是由氧化還原對的氧化峰所發展出來。電化學阻抗光譜(EIS)被用來監測整個電極修飾的過程。EIS可以呈現每個過程中電極表面的阻抗變化。同時我們利用了掃描式電子顯微鏡(SEM)和原子力電子顯微鏡(AFM)來觀察複合薄膜的表徵。循環伏安法(CV)已經被用來做分析物電化學特性的量測。碳糊電極的靈敏度比裸電極還要來的好。最後,利用微分脈衝伏安法(DPV)來偵測混合物分析。

並列摘要


Part I Herein, we report a novel and sensitive method for high electro catalytic determination of Hydroquinone (HQ) and Catechol (CC). It was found that these two compounds could be completely separated on the electrode during cyclic voltammetry (CV) and differential pulse voltammetry (DPV) under optimal conditions. DPV provided larger peak potential separations and higher response sensitivities to HQ and CC compared to CV. Differential pulse voltammetry takes advantage of the linear relationship between the peak current and the concentration for the simultaneous determination of the concentrations of HQ and CC. The use of Pt/ZrO2-RGO/GCE in association with differential pulse voltammetry shows that with HQ the cathodic peak current increases linearly with an increase in the concentration of HQ, ranging from 1-1000μM, in the presence of 40μM CC. A detection limit of 0.4μM (S/ N = 3) can be achieved. At the same period, the anodic current has a linear relationship to the concentration of CC, from 1-400μM, with a detection limit of 0.4μM (S/N = 3) in the presence of 40μM HQ. In addition, the Pt/ZrO2-RGO/GCE composite modified electrode was used successfully for simultaneous determination of the concentration of Hydroquinone (HQ) and Catechol (CC) in wastewater samples with satisfactory recoveries. These results demonstrate that the composite modified electrode is a promising material for use in electrochemical sensing and electrocatalytic applications. Part II Electrochemical synthesis of mixed-valence Mn/Cu complexes has been successfully performed using graphene oxide (GO) and multi-walled carbon nanotubes (MWCNT) as a conductive and steric hybrid nanotemplate. Morphology of the MnCu/MWCNT/GO exhibits compact and nanoporous structure due to high conductivity and high steric space of MWCNT/GO nanotemplate, providing a mixed-valence hybrid composite of copper manganese oxide (CuMn2O4), tenorite (CuO), and hausmannite (Mn3O4). It is electroactive, pH-dependent, and stable in the electrochemical system. It shows eletrocatalytic activity to glucose oxidation with high current response and low overpotential. Both CV and LSV techniques show the same anodic peak (Epa = +0.05 V) for glucose oxidation. Particularly, DPV shows lower oxidation peak potential (Epa = -0.05 V) due to suitable control of pulse parameters. Voltammetric response of MnCu/MWCNT/GO hybrid composite shows linear correlation between current response and glucose concentration estimated with sensitivity of 49.1, 58.6, and 59.3 μA mM-1 cm-2 for using CV, LSV, and DPV techniques, respectively. It shows linear concentration range of 0–32 mM with a detection limit of 1×10-6 M (S/N ≧ 3). Coimmobilization and activity of Mn/Cu complexes can be effectively enhanced by MWCNT and GO, performing an active hybrid nanocomposite for glucose sensing. Part III Carbon paset electrode was electrocatalytically active for dopamine (DA), ascorbic acid (AA) and uric acid (UA) oxidation. The electrocatalytic oxidation current developed from the anodic peak of the redox couple. Electrochemical impedance spectra (EIS) was applied to monitor the whole process of the electrode modification. EIS can give useful information of the impedance changes on the electrode surface between each step. We have studied the surface morphology of composite film using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The cyclic voltammetry (CVs) has been used for the measurement of electroanalytical properties of analytes. The sensitivity values of carbon paset electrode was higher than bare electrode. Finally, the differential pulse voltammetry (DPV) has been used for the detection of mixture analytes at carbon paset electrode. We simulated more complex system if AA, DA and UA were present simultaneously.

參考文獻


[5] A.Sternesjo, Anal. Chem., 226(1995) 175.
[7] P. Saber, W. Lund, Talanta, 29 (1982) 457.
[17] A. A. Balandin et al., Nano Lett. , 2008, 8, 902.
[19] C. Hontoria-Lucas et al., Carbon, 1995, 33, 1585.
[20] 蘇清源,石墨烯氧化物之特性與應用前景,物理雙月刊,2011。

延伸閱讀