透過您的圖書館登入
IP:3.17.73.197
  • 學位論文

AgHCF、金屬奈米粒子與奈米碳材結合的複合薄膜修飾電極的電化學性質研究

Characterization and Electroanalytical Application of Silver Hexacyanoferrate, Metal nanoparticles and Carbon Based Nanocomposite Materials Modified Electrodes

指導教授 : 陳生明

摘要


第一部分介紹一個簡單即快速的方法同時偵測正腎上腺素(NE)與對乙醯氨基酚(AC),是利用二氧化錳搭配化學還原石墨烯氧化物形成納米複合材料修飾電極。我們將藉由掃描式電子顯微鏡(SEM)、X射線能量色散光譜(EDX)、X射衍射、X射線光電子能譜(XPS)、傅立葉變換光譜來證明CRGO-MnO2納米複合材料的型態與組成。CRGO-MnO2修試電極對於正腎上腺素(NE)有著非常好的電催化氧化還原活性。本次實驗利用方波伏安法在最適合的條件以及相同時間下將CRGO-MnO2 modified GCE電極同時偵測正腎上腺素(NE)與對乙醯氨基酚(AC),而且峰質電位分離在正腎上腺素(NE)與對乙醯氨基酚(AC)中高達190mV遠超過CRGO/GCE電極。利用方波伏安法對正腎上腺素(NE)與對乙醯氨基酚(AC)所獲得校準曲線範圍在2.0×10-7-8×10-4 與4.0×10-6-8×10-3 M而偵測極限為2.0×10-9 and 4.0×10-7 M。本文所提出的方法已成功的應用在檢測正腎上腺素(NE)與對乙醯氨基酚(AC)的樣品中獲得很好的結果,另外CRGO-MnO2 modified GCE電極有著良好的再現性與高穩定性。 第二部分是利用鐵氰化銀(AgHCF)與poly (3,4-二氧乙基噻吩)( PEDOT)結合,藉由循環伏安法修飾玻璃碳電極,此修飾薄膜的特性將用原子力顯微鏡(AFM)、掃描式電子顯微鏡(SEM)、能量散佈光譜(EDS)、X射線繞射分析儀(XRD)、電化學阻抗分析法(EIS)做分析,我們用循環伏安法與電流分析法來檢測聯氨發現此薄膜優點,此修飾電極針對聯氨具有高靈敏度(62168uA/Mcm2)以及很快反應時間(3秒),而且具有簡單製備、穩定性、重複性等特色。 第三部分利用電共沉積成功的製備出新穎奈米銀、銅、鎳粒子與多層奈米碳管修飾電極,此Ni/CuAg/MWCNT/GCE修飾電極非酵素來感測葡萄糖。我們藉由掃描式電子顯微鏡(SEM)、X射線繞射分析儀(XRD)分析出奈米銀、銅、鎳粒子成功的沉積在多層奈米碳管上(MWCNT)。Ni/CuAg/MWCNT/GCE修飾電極在鹼性環境下對於葡萄糖有好的活性與低過電,在0.38V與0.5V都有氧化波峰,反應電流大於Ni/CuAg/GCE修飾電極與MWCNT/GCE修飾電極1.7~5.8倍。利用計時安培法偵測葡萄糖,偵測電位在0.6V,我們可以得知反應時間為10秒,線性範圍在5×10-6–4.2×10-4 M,具有高靈敏度5062 μA mM-1 cm-2與低偵測極限5×10-6 M (S/N = 3)。此修飾電極可避免干擾只針對葡萄糖濃度進行分析,此非酵素型感測電極具有低過電位、高靈敏度、好選擇性、好穩定性、反應快速、低成本等特性。

並列摘要


Part I:In the present paper, a simple and rapid method for simultaneously measuring norepinephrine (NE) and acetaminophen (AC) that uses manganese dioxide particle decorated chemically reduced graphene oxide sheet nanocomposite electrodes is presented. The morphology and composition of the CRGO-MnO2 nanocomposites are characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectral techniques. The resultant CRGO-MnO2 modified GCE electrode exhibited excellent electrocatalytic redox activities toward the NE. The experimental parameters for preparation of the CRGO-MnO2 modified GCE also included variables related to simultaneous determination of NE and AC and were optimized condition, at the same time, using square wave voltammetry (SWV). In particular, the peak potential separation between NE and AC at the CRGO-MnO2 modified GCE electrode was to 190 mV, and is much larger than that at the CRGO/GCE electrode. Using a square wave voltammetry, calibration curves for NE and AC were obtained over the range of 2 ×10-7-8×10-4 M and 4 ×10-6-8×10-3 with detection limits of 2.0×10-9 and 4.0×10-7 M, respectively. The proposed method was successfully applied to determine the NE and AC in samples with good results. In addition, the CRGO-MnO2 modified GCE electrode has good reproducibility and high stability. Part II:The silver hexacyanoferrate (AgHCF) mixed-valent poly(3,4-Ethylenedioxythiophene) (PEDOT) hybrid film (AgHCF-PEDOT) was prepare on glassy carbon electrode by multiple scan cyclic voltammetry. These materials are characterized using atomic force microscopy (AFM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), x-ray diffraction studies (XRD) and electrochemical impedance studies (EIS) techniques. The advantages of these films are demonstrated for detection of hydrazine using cyclic voltammetry and amperometric. The electrocatalytic oxidation of The electrochemical sensor for hydrazine exhibited a hight sensitivity (62168uA/Mcm2) and fast response time (3 s).In addition, the AgHCF/PEDOT/GCE exhibited a distinct advantage of simple preparation, specificity, stability and reproducibility. Part III:Novel nickel, copper, and silver nanoparticles (NPs) decorated multi-walled carbon nanotubes (Ni/CuAg/MWCNT) have been successfully fabricated for nonenzymatic glucose detection by the electro-codeposition of copper and silver and sequential deposition of nickel on an MWCNT-modified electrode. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses reveal that the Ni, Cu, and Ag NPs were successfully deposited on the MWCNT in this hybrid composite. In alkaline condition, the electrode shows good activity towards glucose oxidation with low overpotential with obvious oxidation peaks at +0.38 V and +0.5 V and a current response that is 1.7–5.8 times greater than that obtained using Ni/CuAg/GCE and MWCNT/GCE. Amperometry (Eapp. = +0.6 V) indicates a response time of 10 s; one linear range of 5×10-6–4.2×10-4 M, with high sensitivity of 5062 μA mM-1 cm-2 and a low detection limit of 5×10-6 M (S/N = 3). This electrode can effectively analyse glucose concentration avoiding interference, and is a promising nonenzymatic glucose sensor due to its low overpotential, high sensitivity, good selectivity, good stability, fast response, and low cost.

參考文獻


[4] P. Saber, W. Lund, Talanta, 29 (1982) 457.
[8] A. K. Geim and K. S. Novoselov, “The rise of grapheme,” Nat Mater, vol. 6, pp. 183-191, 2007.
[9] Lee, C. et al.. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008, 321 (5887): 385.
[10] Nair, R. R. et al.. Fine Structure Constant Defines Visual Transparency of Graphene. Science. 2008, 320 (5881): 1308.
[12] J. Wu et al., ACS Nano, 4, 43 (2010)

延伸閱讀