透過您的圖書館登入
IP:3.137.162.110
  • 學位論文

非線性系統之自組織模糊滑動模式類神經網路控制器

Self-Organizing Fuzzy Sliding-Mode Radial Basis-Function Neural-Network Controller for Nonlinear Systems

指導教授 : 林震

摘要


本研究發展一自組織模糊滑動模式類神經網路控制器, 以控制非線性系統。 用於自組織模糊滑動模式類神經網路控制器裡面的模糊邏輯控制器之輸入變數,是滑動平面以及其變化量,而不是誤差與誤差變化,這能確保系統運行的穩定性。 自組織模糊滑動模式類神經網路控制器不僅削除了使用自組織模糊類神經網路控制器的穩定性問題,也克服了自組織模糊控制器與自組織模糊滑動模式控制器兩者因為參數選擇不適當所產生的問題, 以及在模糊控制器中因定義不適合的隸屬函數和模糊規則所產生的問題。 為了證明所提出的方法之可行性,我們將自組織模糊滑動模式類神經網路控制器用於控制非線性系統, 其包含微制動器系統以及機械手臂系統, 以確定其控制性能。 而模擬結果證實了使用自組織模糊滑動模式類神經網路控制器來控制非線性系統能夠得到比使用自組織模糊控制器, 自組織模糊滑動模式控制器, 和自組織模糊類神經網路控制器更好的控制性能。

並列摘要


This study developed a self-organizing fuzzy sliding-mode radial basis-function neural-network controller (SFSRBNC) for nonlinear systems. The sliding surface and its differential, rather than the error and error change of the system,are used as input variables of a fuzzy logic controller (FLC) in the SFSRBNC, which guarantees the stability of the system operation. The SFSRBNC not only eliminates the stability problem of a self-organizing fuzzy radial basis-function neural-network controller (SFRBC) application,but also overcomes the problem caused by the inappropriate selection of parameters in both a self-organizing fuzzy controller (SOFC) and a self-organizing fuzzy sliding-mode controller (SFSC), and by the determination of unsuitable membership functions and fuzzy rules in an FLC.To demonstrate the feasibility of the proposed method, the SFSRBNC was applied to controlling nonlinear systems which are a microactuator system and a robotic system to determine their control performances. Simulation results verified that the SFSRBNC gained better control performance than the SFRBC, SFSC, and SOFC for the control of the nonlinear systems.

參考文獻


[1] H. C. Nathanson, W.E. Newell, R.A. Wickstrom, and J. R. Davis, “ The Resonant Gate Transistor, ” IEEE Transactions on Electron Devices, Vol. 14, 1967, pp. 117-133.
[3] J. Seeger, S. Crary, “ Stabilazation of electrostatically actuated mechanical devices,
”in Proc. 9th International Conf. Solid-State Sensors and Actuators (Transducers’
[5] S. C. Lu, GK Fedder, “ Position control of parallel-plate microactuators for probebased
parallel-plate electrostatic actuator for full-gap travel range and positioning, ” IEEE

延伸閱讀