透過您的圖書館登入
IP:18.223.172.252
  • 學位論文

應用免疫演算法最佳化火力機組調派

Using Immune Algorithm to Optimal Thermal Unit Commitment

指導教授 : 陳昭榮

摘要


本論文針對電力系統作最佳火力機組調派,一般而言火力機組調派主要是規劃各發電機組於每小時的狀態及發電量,在滿足各項限制條件下使系統總發電成本最小化。 本論文首先考慮在輸電線損失的情況下經由考慮包含損失的經濟調度可得各機組的發電量,然後利用免疫演算法運行產生最佳發電機組狀態排程。免疫演算法為自組織性的演算法,其精神主要是模擬人體在免疫反應的過程,透過淋巴球細胞表面抗原識別機制,以及利用免疫系統中的抑制細胞,抑制相似度較高的抗體,增加抗體間雜異度,確保避免收斂於區域最佳解中,而免疫系統中抗體透過世代交替進化達成自組織的分散搜尋方式有效地解決大型的分群問題。對於較為優良的抗體,免疫系統會以記憶細胞的型態保存以資協助次世代抗體產生,這個機制能夠幫助我們有效且快速的取得相當好的解答。 本論文利用提議的方法對IEEE 30-bus系統與台電簡化系統做模擬,以一天24小時做機組調派,並且將調度結果和基因演算法、螞蟻系統、蟻拓演算法以及動態規劃法做比較,經由實驗可得更佳之發電成本,期望能輔助調度人員做出更經濟之調度。

並列摘要


Aim of the thesis is to optimal thermal unit commitment of transmission system. In general, the major purpose of thermal unit commitment is to schedule the on/off status, real power output of units at each hour and minimize the total production cost under constraints in the system. This thesis first consider point is transmission line loss, then take the economic dispatch that include losses to obtain the output of each unit, and apply Immune Algorithm to acquire the most favorable generation schedule. Immune Algorithm has self-organizing ability and simulates the immune response in the human body, use surface of lymphocyte to discern the antigen and use the suppressor cell to restrain to high affinity antibodies, increase the diversity between the antibodies, that can avoid drop into the local optimal solution. Immune system can use antibody self-organizing ability and dispersal search to solve the large question. Immune system use memory function to save the better antibodies to next generation that can help to have the good answer quickly. This thesis simulates the proposed method for 24-hour unit commitment on an IEEE 30-bus power system and a reduced Taipower system. The dispatch solutions are then compared to their counterparts obtained by Genetic Algorithm(GA), Ant Colony System (ACS), Ant System (AS) and Dynamic Programming (DP) to verify the proposed method as a better approach for achieving the optimal cost of power generation. The proposed method can therefore be expected to help dispatchers perform more economical dispatch.

參考文獻


[2] D. Dasgupta, “Artificial neural networks and artificial immune systems: similarities and differences,” IEEE International Conference on Computational Cybernetics and Simulation, Vol.1, 1997, PP. 873-878
[3] D. Dasgupta , N. Attoh-Okine , “Immunity-based systems: a survey,” IEEE International Conference on 'Computational Cybernetics and Simulation,' Vol.1, 1997, PP. 369-374
[4] S. Endoh, N. Toma, K. Yamada, “Immune algorithm for n-TSP,” IEEE Conference on Systems, Man, and Cybernetics, Vol. 4, 1998, pp. 3844-3849
[6] X. Yang , Y. Zhang, L. Gui, S. Zhou, “Study of lower extremity exoskeleton Electronic System Fault Diagnosis Based on Immune Evolution Algorithm,” IEEE International Conference on Electronic Measurement and Instruments, Vol. 8, No. 3, 2007, pp. 687-690
[9] G. L. Kusic and H. A. Putnarn, “Dispatch and unit commitment including commonly owned units,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-104, No. 9, 1985, pp. 2408-2412.

被引用紀錄


林郁修(2010)。基於一個新穎的特徵萃取方法及人工智慧技術之自適應非侵入式負載監測系統研發〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2207201017365500
劉威良(2012)。田口-免疫演算法應用於含風力發電之火力機組調派〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1008201217062400
李柏彥(2013)。應用量子蟻拓演算法求解包含碳交易之短期火力機組排程〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2407201318521600
徐亞信(2014)。以價格基礎為導向考慮風力之機組排程與風險評估〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1808201413211200
董致宏(2014)。應用類神經網路與類免疫演算法於空調系統最佳化運轉〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-2907201417291200

延伸閱讀