透過您的圖書館登入
IP:3.149.229.253
  • 學位論文

可變幾何懸吊系統之設計與控制

Design and Control of Variable Geometry Suspension Systems

指導教授 : 尤正吉

摘要


本論文發展可變幾何懸吊系統,於車輛過彎時達到抑制車身翻滾角的效果。首先利用懸吊導數法(Suspension Derivative Method)分別建構四分之一車與二分之一車之雞胸骨式懸吊與麥花臣式懸吊之幾何模型,接著使用力平衡法配合四分之一車懸吊幾何模型進行懸吊接點受力分析,並根據所建立之幾何模型與接點受力分析求得懸吊系統之重要參數,如輪胎前束角(Toe)、輪胎等效剛性(Wheel Rate)、車身翻滾剛性(Suspension Roll Rate)與車身翻滾中心(Roll Center)位置等。隨後,分別將懸吊上、下控制臂與車身之接點改為移動接點並加入一滑軸,使移動接點可沿著滑軸移動形成可變幾何懸吊模型,並且利用ADAMS/Car分別驗證上述懸吊數學模型的正確性。在機構設計的部分以輪胎前束角、車身翻滾中心的高度位置與移動接點的軸向總受力為設計指標,利用全域搜尋法進行最佳化,來決定該滑軸座落於空間之設置角,同時歸納分析結果來推薦合適的改裝形式。在控制系統的部分則提出一個結合懸吊幾何與力學之可變幾何車身翻滾模型,以此模型為基礎來設計一個反模型前饋控制器(Inverse Plant Feedforward Controller),將模型中的參數分別建立為查表(Look-Up Table),以提升其控制命令運算的速度,且搭配比例積分控制器來加強車身翻滾角的控制效果,形成控制系統執行移動接點之位置控制。最後,利用ADAMS/Control結合Matlab/Simulink進行全車動態控制模擬,同時導入主動式懸吊系統,評估兩者在相同的性能表現下之耗能差異。

並列摘要


In this paper, variable geometry suspension system (VGSS) is proposed to improve anti-roll performance of vehicle. The quarter-car and half-car geometry model of Double-Wishbone and Macpherson Strut suspension system are builded using Suspension Derivative Method, respectively. Force analysis of quarter-car suspension model also completed based on Equilibrium Method. Then, suspension characteristics parameters, such as toe angle, roll center location, wheel rate, and suspension roll rate, can be find out with geometry model and force analysis results. Subsequently, sliders are installed between upper and lower control arms of suspensions and vehicle body form VGSS models. ADAMS/Car is used to verify geometry model and force analysis under kinematic mode. Installation angle of slide shaft of the VGSS is optimized according to the cost function that composed of toe angle, roll center vertical location and slider axial force. VGSS roll model that consists of geometry model and roll model is derivatived for feedforward controller design. Parameters of the VGSS roll model are created as look-up tables to increase efficiency of controller operation. Proportional-Integral controller is combined with the feedforward controller for transient compensation. Finally, we also combine the software “Adams/Car” and “Matlab/Simulink” with the control system for the full-vehicle model verification. Energy consumption of proposed VGSS that is compared with vehicle equipped with active suspension system based on same anti-roll performance.

參考文獻


[31] 姚志樺,可變幾何懸吊系統之分析,碩士論文,國立台北科技大學車,台北,2004。
[1] H. E. Tseng, “The development of vehicle stability control at Ford,” IEEE/ASME Transactions on Mechatronics, vol. 4, no. 3, 1999, pp. 223-234.
[4] A. V. Zanten, R. Erhardt and G. Pfaff, “VDC, the vehicle dynamics control system of Bosch,” SAE Paper No. 950759.
[5] H. Leffler, R. Auffhammer, R. Heyken and H. Röth, “New Driving Stability Control System with Reduced Technical Effort for Compact and Medium Class Passenger Cars,” SAE Paper No. 980234.
[6] L. Palkovics, A. Semsey and E. Gerum, “Roll-Over Prevention System for Commercial Vehicles – Additional Sensorless Function of the Electronic Brake System,” Vehicle System Dynamics 32(4) (1999), pp. 285-297.

延伸閱讀